URL 去重在我们日常工作中和面试中很常遇到,比如这些:
可以看出,包括阿里,网易云、优酷、作业帮等知名互联网公司都出现过类似的面试题,而且和 URL 去重比较类似的,如 IP 黑/白名单判断等也经常出现在我们的工作中,所以我们本文就来“盘一盘”URL 去重的问题。
在不考虑业务场景和数据量的情况下,我们可以使用以下方案来实现 URL 的重复判断:
以上方案的具体实现如下。
Set 集合天生具备不可重复性,使用它只能存储值不相同的元素,如果值相同添加就会失败,因此我们可以通过添加 Set 集合时的结果来判定 URL 是否重复,实现代码如下:
public class URLRepeat {
// 待去重 URL
public static final String[] URLS = {
"www.apigo.cn",
"www.baidu.com",
"www.apigo.cn"
};
public static void main(String[] args) {
Set<String> set = new HashSet();
for (int i = 0; i < URLS.length; i++) {
String url = URLS[i];
boolean result = set.add(url);
if (!result) {
// 重复的 URL
System.out.println("URL 已存在了:" + url);
}
}
}
}
程序的执行结果为:
URL 已存在了:www.apigo.cn
从上述结果可以看出,使用 Set 集合可以实现 URL 的判重功能。
使用 Redis 的 Set 集合的实现思路和 Java 中的 Set 集合思想思路是一致的,都是利用 Set 的不可重复性实现的,我们先使用 Redis 的客户端 redis-cli 来实现一下 URL 判重的示例:
从上述结果可以看出,当添加成功时表示 URL 没有重复,但添加失败时(结果为 0)表示此 URL 已经存在了。
我们再用代码的方式来实现一下 Redis 的 Set 去重,实现代码如下:
// 待去重 URL
public static final String[] URLS = {
"www.apigo.cn",
"www.baidu.com",
"www.apigo.cn"
};
@Autowired
RedisTemplate redisTemplate;
@RequestMapping("/url")
public void urlRepeat() {
for (int i = 0; i < URLS.length; i++) {
String url = URLS[i];
Long result = redisTemplate.opsForSet().add("urlrepeat", url);
if (result == 0) {
// 重复的 URL
System.out.println("URL 已存在了:" + url);
}
}
}
以上程序的执行结果为:
URL 已存在了:www.apigo.cn
以上代码中我们借助了 Spring Data 中的 RedisTemplate
实现的,在 Spring Boot 项目中要使用 RedisTemplate
对象我们需要先引入 spring-boot-starter-data-redis
框架,配置信息如下:
<!-- 添加操作 RedisTemplate 引用 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
然后需要再项目中配置 Redis 的连接信息,在 application.properties 中配置如下内容:
spring.redis.host=127.0.0.1
spring.redis.port=6379
#spring.redis.password=123456 # Redis 服务器密码,有密码的话需要配置此项
经过以上两个步骤之后,我们就可以在 Spring Boot 的项目中正常的使用 RedisTemplate
对象来操作 Redis 了。
3.数据库去重
我们也可以借助数据库实现 URL 的重复判断,首先我们先来设计一张 URL 的存储表,如下图所示:
此表对应的 SQL 如下:
/*==============================================================*/
/* Table: urlinfo */
/*==============================================================*/
create table urlinfo
(
id int not null auto_increment,
url varchar(1000),
ctime date,
del boolean,
primary key (id)
);
/*==============================================================*/
/* Index: Index_url */
/*==============================================================*/
create index Index_url on urlinfo
(
url
);
其中 id
为自增的主键,而 url
字段设置为索引,设置索引可以加快查询的速度。
我们先在数据库中添加两条测试数据,如下图所示:
我们使用 SQL 语句查询,如下图所示:
如果结果大于 0 则表明已经有重复的 URL 了,否则表示没有重复的 URL。
我们也可以使用数据库的唯一索引来防止 URL 重复,它的实现思路和前面 Set 集合的思想思路非常像。
首先我们先为字段 URL 设置了唯一索引,然后再添加 URL 数据,如果能添加成功则表明 URL 不重复,反之则表示重复。
创建唯一索引的 SQL 实现如下:
create unique index Index_url on urlinfo
(
url
);
布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
布隆过滤器的核心实现是一个超大的位数组和几个哈希函数,假设位数组的长度为 m,哈希函数的个数为 k。
以上图为例,具体的操作流程:假设集合里面有 3 个元素 {x, y, z},哈希函数的个数为 3。首先将位数组进行初始化,将里面每个位都设置位 0。对于集合里面的每一个元素,将元素依次通过 3 个哈希函数进行映射,每次映射都会产生一个哈希值,这个值对应位数组上面的一个点,然后将位数组对应的位置标记为 1,查询 W 元素是否存在集合中的时候,同样的方法将 W 通过哈希映射到位数组上的 3 个点。如果 3 个点的其中有一个点不为 1,则可以判断该元素一定不存在集合中。反之,如果 3 个点都为 1,则该元素可能存在集合中。注意:此处不能判断该元素是否一定存在集合中,可能存在一定的误判率。可以从图中可以看到:假设某个元素通过映射对应下标为 4、5、6 这 3 个点。虽然这 3 个点都为 1,但是很明显这 3 个点是不同元素经过哈希得到的位置,因此这种情况说明元素虽然不在集合中,也可能对应的都是 1,这是误判率存在的原因。
我们可以借助 Google 提供的 Guava 框架来操作布隆过滤器,实现我们先在 pom.xml 中添加 Guava 的引用,配置如下:
<!-- 添加 Guava 框架 -->
<!-- https://mvnrepository.com/artifact/com.google.guava/guava -->
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>28.2-jre</version>
</dependency>
URL 判重的实现代码:
public class URLRepeat {
// 待去重 URL
public static final String[] URLS = {
"www.apigo.cn",
"www.baidu.com",
"www.apigo.cn"
};
public static void main(String[] args) {
// 创建一个布隆过滤器
BloomFilter<String> filter = BloomFilter.create(
Funnels.stringFunnel(Charset.defaultCharset()),
10, // 期望处理的元素数量
0.01); // 期望的误报概率
for (int i = 0; i < URLS.length; i++) {
String url = URLS[i];
if (filter.mightContain(url)) {
// 用重复的 URL
System.out.println("URL 已存在了:" + url);
} else {
// 将 URL 存储在布隆过滤器中
filter.put(url);
}
}
}
}
以上程序的执行结果为:
URL 已存在了:www.apigo.cn
除了 Guava 的布隆过滤器,我们还可以使用 Redis 的布隆过滤器来实现 URL 判重。在使用之前,我们先要确保 Redis 服务器版本大于 4.0(此版本以上才支持布隆过滤器),并且开启了 Redis 布隆过滤器功能才能正常使用。
以 Docker 为例,我们来演示一下 Redis 布隆过滤器安装和开启,首先下载 Redis 的布隆过器,然后再在重启 Redis 服务时开启布隆过滤器,如下图所示:
布隆过滤器使用布隆过滤器正常开启之后,我们先用 Redis 的客户端 redis-cli 来实现一下布隆过滤器 URL 判重了,实现命令如下:
在 Redis 中,布隆过滤器的操作命令不多,主要包含以下几个:
- bf.add 添加元素;
- bf.exists 判断某个元素是否存在;
- bf.madd 添加多个元素;
- bf.mexists 判断多个元素是否存在;
- bf.reserve 设置布隆过滤器的准确率。
接下来我们使用代码来演示一下 Redis 布隆过滤器的使用:
import redis.clients.jedis.Jedis;
import utils.JedisUtils;
import java.util.Arrays;
public class BloomExample {
// 布隆过滤器 key
private static final String _KEY = "URLREPEAT_KEY";
// 待去重 URL
public static final String[] URLS = {
"www.apigo.cn",
"www.baidu.com",
"www.apigo.cn"
};
public static void main(String[] args) {
Jedis jedis = JedisUtils.getJedis();
for (int i = 0; i < URLS.length; i++) {
String url = URLS[i];
boolean exists = bfExists(jedis, _KEY, url);
if (exists) {
// 重复的 URL
System.out.println("URL 已存在了:" + url);
} else {
bfAdd(jedis, _KEY, url);
}
}
}
/**
* 添加元素
* @param jedis Redis 客户端
* @param key key
* @param value value
* @return boolean
*/
public static boolean bfAdd(Jedis jedis, String key, String value) {
String luaStr = "return redis.call('bf.add', KEYS[1], KEYS[2])";
Object result = jedis.eval(luaStr, Arrays.asList(key, value),
Arrays.asList());
if (result.equals(1L)) {
return true;
}
return false;
}
/**
* 查询元素是否存在
* @param jedis Redis 客户端
* @param key key
* @param value value
* @return boolean
*/
public static boolean bfExists(Jedis jedis, String key, String value) {
String luaStr = "return redis.call('bf.exists', KEYS[1], KEYS[2])";
Object result = jedis.eval(luaStr, Arrays.asList(key, value),
Arrays.asList());
if (result.equals(1L)) {
return true;
}
return false;
}
}
以上程序的执行结果为:
URL 已存在了:www.apigo.cn
本文介绍了 6 种 URL 去重的方案,其中 Redis Set、Redis 布隆过滤器、数据库和唯一索引这 4 种解决方案适用于分布式系统,如果是海量的分布式系统,建议使用 Redis 布隆过滤器来实现 URL 去重,如果是单机海量数据推荐使用 Guava 的布隆器来实现 URL 去重。
本文由哈喽比特于4年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/13gVM8ufQN-qrVdAA_yvLQ
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。