iOS GPUImage源码解读(一)

发表于 4年以前  | 总阅读数:1844 次

导语:最近在不断学习、使用的过程中,有了更深刻的理解,特来写一篇源码解读的文章详细介绍下核心代码的具体实现。至于括号里的“一”,主要是觉得GPUImage还有很多值得深入学习和分享的内容,后续的学习和使用过程中有新的心得体会还会继续给大家分享。

前言

GPUImage是iOS上一个基于OpenGL进行图像处理的开源框架,内置大量滤镜,架构灵活,可以在其基础上很轻松地实现各种图像处理功能。本文主要向大家分享一下项目的核心架构、源码解读及使用心得。

GPUImage有哪些特性

  1. 丰富的输入组件 摄像头、图片、视频、OpenGL纹理、二进制数据、UIElement(UIView, CALayer)
  2. 大量现成的内置滤镜(4大类) 1). 颜色类(亮度、色度、饱和度、对比度、曲线、白平衡...) 2). 图像类(仿射变换、裁剪、高斯模糊、毛玻璃效果...) 3). 颜色混合类(差异混合、alpha混合、遮罩混合...) 4). 效果类(像素化、素描效果、压花效果、球形玻璃效果...)
  3. 丰富的输出组件 UIView、视频文件、GPU纹理、二进制数据
  4. 灵活的滤镜链 滤镜效果之间可以相互串联、并联,调用管理相当灵活。
  5. 接口易用 滤镜和OpenGL资源的创建及使用都做了统一的封装,简单易用,并且内置了一个cache模块实现了framebuffer的复用。
  6. 线程管理 OpenGLContext不是多线程安全的,GPUImage创建了专门的contextQueue,所有的滤镜都会扔到统一的线程中处理。
  7. 轻松实现自定义滤镜效果 继承GPUImageFilter自动获得上面全部特性,无需关注上下文的环境搭建,专注于效果的核心算法实现即可。

基本用法

// 获取一张图片
UIImage *inputImage = [UIImage imageNamed:@"sample.jpg"];
// 创建图片输入组件GPUImagePicture *sourcePicture = [[GPUImagePicture alloc] initWithImage:inputImage smoothlyScaleOutput:YES]; 
// 创建素描滤镜
GPUImageSketchFilter *customFilter = [[GPUImageSketchFilter alloc] init]; 
// 把素描滤镜串联在图片输入组件之后
[sourcePicture addTarget:customFilter];
// 创建ImageView输出组件GPUImageView *imageView = [[GPUImageView alloc] initWithFrame:mainScreenFrame];
[self.view addSubView:imageView];
// 把ImageView输出组件串在滤镜链末尾[customFilter addTarget:imageView];
// 调用图片输入组件的process方法,渲染结果就会绘制到imageView上[sourcePicture processImage];

效果如图:

整个框架的目录结构

核心架构

基本上每个滤镜都继承自GPUImageFilter; 而GPUImageFilter作为整套框架的核心; 接收一个GPUImageFrameBuffer输入; 调用GLProgram渲染处理; 输出一个GPUImageFrameBuffer; 把输出的GPUImageFrameBuffer传给通过targets属性关联的下级滤镜; 直到传递至最终的输出组件;

核心架构可以整体划分为三块:输入、滤镜处理、输出 接下来我们就深入源码,看看GPUImage是如何获取数据、传递数据、处理数据和输出数据的

获取数据

GPUImage提供了多种不同的输入组件,但是无论是哪种输入源,获取数据的本质都是把图像数据转换成OpenGL纹理。这里就以视频拍摄组件(GPUImageVideoCamera)为例,来讲讲GPUImage是如何把每帧采样数据传入到GPU的。

GPUImageVideoCamera里大部分代码都是对摄像头的调用管理,不了解的同学可以去学习一下AVFoundation(传送门)。摄像头拍摄过程中每一帧都会有一个数据回调,在GPUImageVideoCamera中对应的处理回调的方法为:

- (void)processVideoSampleBuffer:(CMSampleBufferRef)sampleBuffer;

iOS的每一帧摄像头采样数据都会封装成CMSampleBufferRef; CMSampleBufferRef除了包含图像数据、还包含一些格式信息、图像宽高、时间戳等额外属性; 摄像头默认的采样格式为YUV420,关于YUV格式大家可以自行搜索学习一下(传送门):

YUV420按照数据的存储方式又可以细分成若干种格式,这里主要是kCVPixelFormatType_420YpCbCr8BiPlanarFullRange和kCVPixelFormatType_420YpCbCr8BiPlanarVideoRange两种;

两种格式都是planar类型的存储方式,y数据和uv数据分开放在两个plane中; 这样的数据没法直接传给GPU去用,GPUImageVideoCamera把两个plane的数据分别取出:

- (void)processVideoSampleBuffer:(CMSampleBufferRef)sampleBuffer {    // 一大坨的代码用于获取采样数据的基本属性(宽、高、格式等等)
    ......    if ([GPUImageContext supportsFastTextureUpload] && captureAsYUV) {
        CVOpenGLESTextureRef luminanceTextureRef = NULL;
        CVOpenGLESTextureRef chrominanceTextureRef = NULL;        if (CVPixelBufferGetPlaneCount(cameraFrame) > 0) // Check for YUV planar inputs to do RGB conversion
        {
            ......
// 从cameraFrame的plane-0提取y通道的数据,填充到luminanceTextureRef
            glActiveTexture(GL_TEXTURE4);
            err = CVOpenGLESTextureCacheCreateTextureFromImage(kCFAllocatorDefault, [[GPUImageContext sharedImageProcessingContext] coreVideoTextureCache], cameraFrame, NULL, GL_TEXTURE_2D, GL_LUMINANCE, bufferWidth, bufferHeight, GL_LUMINANCE, GL_UNSIGNED_BYTE, 0, &luminanceTextureRef);
            ......            
            // 从cameraFrame的plane-1提取uv通道的数据,填充到chrominanceTextureRef
            glActiveTexture(GL_TEXTURE5);
            err = CVOpenGLESTextureCacheCreateTextureFromImage(kCFAllocatorDefault, [[GPUImageContext sharedImageProcessingContext] coreVideoTextureCache], cameraFrame, NULL, GL_TEXTURE_2D, GL_LUMINANCE_ALPHA, bufferWidth/2, bufferHeight/2, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, 1, &chrominanceTextureRef);
            ......            
            // 把luminance和chrominance作为2个独立的纹理传入GPU
            [self convertYUVToRGBOutput];

            ......
        }
    } else {
        ......
    }  
}

注意CVOpenGLESTextureCacheCreateTextureFromImage中对于internalFormat的设置; 通常我们创建一般纹理的时候都会设成GL_RGBA,传入的图像数据也会是rgba格式的; 而这里y数据因为只包含一个通道,所以设成了GL_LUMINANCE(灰度图); uv数据则包含2个通道,所以设成了GL_LUMINANCE_ALPHA(带alpha的灰度图); 另外uv纹理的宽高只设成了图像宽高的一半,这是因为yuv420中,每个相邻的2x2格子共用一份uv数据; 数据传到GPU纹理后,再通过一个颜色转换(yuv->rgb)的shader(shader是OpenGL可编程着色器,可以理解为GPU侧的代码,关于shader需要一些OpenGL编程基础(传送门)),绘制到目标纹理:

 // fullrange
 varying highp vec2 textureCoordinate;
 uniform sampler2D luminanceTexture;
 uniform sampler2D chrominanceTexture;
 uniform mediump mat3 colorConversionMatrix; 
 void main() {
     mediump vec3 yuv;
     lowp vec3 rgb;
     yuv.x = texture2D(luminanceTexture, textureCoordinate).r;
     yuv.yz = texture2D(chrominanceTexture, textureCoordinate).ra - vec2(0.5, 0.5);
     rgb = colorConversionMatrix * yuv;
     gl_FragColor = vec4(rgb, 1);
 }
 // videorange
 varying highp vec2 textureCoordinate;
 uniform sampler2D luminanceTexture;
 uniform sampler2D chrominanceTexture;
 uniform mediump mat3 colorConversionMatrix; void main() {
     mediump vec3 yuv;
     lowp vec3 rgb;
     yuv.x = texture2D(luminanceTexture, textureCoordinate).r - (16.0/255.0);
     yuv.yz = texture2D(chrominanceTexture, textureCoordinate).ra - vec2(0.5, 0.5);
     rgb = colorConversionMatrix * yuv;
     gl_FragColor = vec4(rgb, 1);
 }

注意yuv420fullrange和yuv420videorange的数值范围是不同的,因此转换公式也不同,这里会有2个颜色转换shader,根据实际的采样格式选择正确的shader; 渲染输出到目标纹理后就得到一个转换成rgb格式的GPU纹理,完成了获取输入数据的工作;

传递数据

GPUImage的图像处理过程,被设计成了滤镜链的形式;输入组件、效果滤镜、输出组件串联在一起,每次推动渲染的时候,输入数据就会按顺序传递,经过处理,最终输出。

GPUImage设计了一个GPUImageInput协议,定义了GPUImageFilter之间传入数据的方法:

- (void)setInputFramebuffer:(GPUImageFramebuffer *)newInputFramebuffer atIndex:(NSInteger)textureIndex {
    firstInputFramebuffer = newInputFramebuffer;
    [firstInputFramebuffer lock];
}

firstInputFramebuffer属性用来保存输入纹理; GPUImageFilter作为单输入滤镜基类遵守了GPUImageInput协议,GPUImage还提供了GPUImageTwoInputFilter, GPUImageThreeInputFilter等多输入filter的基类。

这里还有一个很重要的入口方法用于推动数据流转:

- (void)newFrameReadyAtTime:(CMTime)frameTime atIndex:(NSInteger)textureIndex {
    ......

    [self renderToTextureWithVertices:imageVertices textureCoordinates:[[self class] textureCoordinatesForRotation:inputRotation]];

    [self informTargetsAboutNewFrameAtTime:frameTime];
}

每个滤镜都是由这个入口方法开始启动,这个方法包含2个调用 1). 首先调用render方法进行效果渲染 2). 调用informTargets方法将渲染结果推到下级滤镜

GPUImageFilter继承自GPUImageOutput,定义了输出数据,向后传递的方法:

- (void)notifyTargetsAboutNewOutputTexture;

但是这里比较奇怪的是滤镜链的传递实际并没有用notifyTargets方法,而是用了前面提到的informTargets方法:

- (void)informTargetsAboutNewFrameAtTime:(CMTime)frameTime {
    ......    
    // Get all targets the framebuffer so they can grab a lock on it
    for (id<GPUImageInput> currentTarget in targets) {        if (currentTarget != self.targetToIgnoreForUpdates) {            NSInteger indexOfObject = [targets indexOfObject:currentTarget];            NSInteger textureIndex = [[targetTextureIndices objectAtIndex:indexOfObject] integerValue];
            [self setInputFramebufferForTarget:currentTarget atIndex:textureIndex];
            [currentTarget setInputSize:[self outputFrameSize] atIndex:textureIndex];
        }
    }

    ......    
    // Trigger processing last, so that our unlock comes first in serial execution, avoiding the need for a callback
    for (id<GPUImageInput> currentTarget in targets) {        if (currentTarget != self.targetToIgnoreForUpdates) {            NSInteger indexOfObject = [targets indexOfObject:currentTarget];            NSInteger textureIndex = [[targetTextureIndices objectAtIndex:indexOfObject] integerValue];
            [currentTarget newFrameReadyAtTime:frameTime atIndex:textureIndex];
        }
    }
}

GPUImageOutput定义了一个targets属性来保存下一级滤镜,这里可以注意到targets是个数组,因此滤镜链也支持并联结构。可以看到这个方法主要做了2件事情: 1). 对每个target调用setInputFramebuffer方法把自己的渲染结果传给下级滤镜作为输入 2). 对每个target调用newFrameReadyAtTime方法推动下级滤镜启动渲染 滤镜之间通过targets属性相互衔接串在一起,完成了数据传递工作。

处理数据

前面提到的renderToTextureWithVertices:方法便是每个滤镜必经的渲染入口。 每个滤镜都可以设置自己的shader,重写该渲染方法,实现自己的效果:

- (void)renderToTextureWithVertices:(const GLfloat *)vertices textureCoordinates:(const GLfloat *)textureCoordinates {
    ......

    [GPUImageContext setActiveShaderProgram:filterProgram];

    outputFramebuffer = [[GPUImageContext sharedFramebufferCache] fetchFramebufferForSize:[self sizeOfFBO] textureOptions:self.outputTextureOptions onlyTexture:NO];
    [outputFramebuffer activateFramebuffer];
    ......

    [self setUniformsForProgramAtIndex:0];

    glClearColor(backgroundColorRed, backgroundColorGreen, backgroundColorBlue, backgroundColorAlpha);
    glClear(GL_COLOR_BUFFER_BIT);

    glActiveTexture(GL_TEXTURE2);
    glBindTexture(GL_TEXTURE_2D, [firstInputFramebuffer texture]);
    glUniform1i(filterInputTextureUniform, 2);  

    glVertexAttribPointer(filterPositionAttribute, 2, GL_FLOAT, 0, 0, vertices);
    glVertexAttribPointer(filterTextureCoordinateAttribute, 2, GL_FLOAT, 0, 0, textureCoordinates);

    glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

    ......
}

上面这个是GPUImageFilter的默认方法,大致做了这么几件事情: 1). 向frameBufferCache申请一个outputFrameBuffer 2). 将申请得到的outputFrameBuffer激活并设为渲染对象 3). glClear清除画布 4). 设置输入纹理 5). 传入顶点 6). 传入纹理坐标 7). 调用绘制方法

再来看看GPUImageFilter使用的默认shader:

 // vertex shader
 attribute vec4 position;
 attribute vec4 inputTextureCoordinate;
 varying vec2 textureCoordinate; void main() {
     gl_Position = position;
     textureCoordinate = inputTextureCoordinate.xy;
 }
 // fragment shader
 varying highp vec2 textureCoordinate;
 uniform sampler2D inputImageTexture; void main() {
     gl_FragColor = texture2D(inputImageTexture, textureCoordinate);
 }

这个shader实际上啥也没做,VertexShader(顶点着色器)就是把传入的顶点坐标和纹理坐标原样传给FragmentShader,FragmentShader(片段着色器)就是从纹理取出原始色值直接输出,最终效果就是把图片原样渲染到画面。

输出数据

比较常用的主要是GPUImageView和GPUImageMovieWriter。

GPUImageView继承自UIView,用于实时预览,用法非常简单 1). 创建GPUImageView 2). 串入滤镜链 3). 插到视图里去 UIView的contentMode、hidden、backgroundColor等属性都可以正常使用 里面比较关键的方法主要有这么2个:

// 申明自己的CALayer为CAEAGLLayer+ (Class)layerClass  {    return [CAEAGLLayer class];
}
- (void)createDisplayFramebuffer {
    [GPUImageContext useImageProcessingContext];

    glGenFramebuffers(1, &displayFramebuffer);
    glBindFramebuffer(GL_FRAMEBUFFER, displayFramebuffer);

    glGenRenderbuffers(1, &displayRenderbuffer);
    glBindRenderbuffer(GL_RENDERBUFFER, displayRenderbuffer);

    [[[GPUImageContext sharedImageProcessingContext] context] renderbufferStorage:GL_RENDERBUFFER fromDrawable:(CAEAGLLayer*)self.layer];

    GLint backingWidth, backingHeight;

    glGetRenderbufferParameteriv(GL_RENDERBUFFER, GL_RENDERBUFFER_WIDTH, &backingWidth);
    glGetRenderbufferParameteriv(GL_RENDERBUFFER, GL_RENDERBUFFER_HEIGHT, &backingHeight);

    ......

    glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, displayRenderbuffer);

    ......
}

创建frameBuffer和renderBuffer时把renderBuffer和CALayer关联在一起; 这是iOS内建的一种GPU渲染输出的联动方法; 这样newFrameReadyAtTime渲染过后画面就会输出到CALayer。

GPUImageMovieWriter主要用于将视频输出到磁盘; 里面大量的代码都是在设置和使用AVAssetWriter,不了解的同学还是得去看AVFoundation; 这里主要是重写了newFrameReadyAtTime:方法:

- (void)newFrameReadyAtTime:(CMTime)frameTime atIndex:(NSInteger)textureIndex {
    ......

    GPUImageFramebuffer *inputFramebufferForBlock = firstInputFramebuffer;
    glFinish();

    runAsynchronouslyOnContextQueue(_movieWriterContext, ^{
        ......        
        // Render the frame with swizzled colors, so that they can be uploaded quickly as BGRA frames
        [_movieWriterContext useAsCurrentContext];
        [self renderAtInternalSizeUsingFramebuffer:inputFramebufferForBlock];

        CVPixelBufferRef pixel_buffer = NULL;        
        if ([GPUImageContext supportsFastTextureUpload]) {
            pixel_buffer = renderTarget;
            CVPixelBufferLockBaseAddress(pixel_buffer, 0);
        } else {
            CVReturn status = CVPixelBufferPoolCreatePixelBuffer (NULL, [assetWriterPixelBufferInput pixelBufferPool], &pixel_buffer);            if ((pixel_buffer == NULL) || (status != kCVReturnSuccess)) {
                CVPixelBufferRelease(pixel_buffer);                return;
            } else {
                CVPixelBufferLockBaseAddress(pixel_buffer, 0);

                GLubyte *pixelBufferData = (GLubyte *)CVPixelBufferGetBaseAddress(pixel_buffer);
                glReadPixels(0, 0, videoSize.width, videoSize.height, GL_RGBA, GL_UNSIGNED_BYTE, pixelBufferData);
            }
        }

        ......
        [assetWriterPixelBufferInput appendPixelBuffer:pixel_buffer];
        ......
    });
}

这里有几个地方值得注意: 1). 在取数据之前先调了一下glFinish,CPU和GPU之间是类似于client-server的关系,CPU侧调用OpenGL命令后并不是同步等待OpenGL完成渲染再继续执行的,而glFinish命令可以确保OpenGL把队列中的命令都渲染完再继续执行,这样可以保证后面取到的数据是正确的当次渲染结果。 2). 取数据时用了supportsFastTextureUpload判断,这是个从iOS5开始支持的一种CVOpenGLESTextureCacheRef和CVImageBufferRef的映射(映射的创建可以参看获取数据中的CVOpenGLESTextureCacheCreateTextureFromImage),通过这个映射可以直接拿到CVPixelBufferRef而不需要再用glReadPixel来读取数据,这样性能更好。

最后归纳一下本文涉及到的知识点

1. AVFoundation 摄像头调用、输出视频都会用到AVFoundation 2. YUV420 视频采集的数据格式 3. OpenGL shader GPU的可编程着色器 4. CAEAGLLayer iOS内建的GPU到屏幕的联动方法 5. fastTextureUpload iOS5开始支持的一种CVOpenGLESTextureCacheRef和CVImageBufferRef的映射


作者简介:billzbwang(王志斌),天天P图iOS工程师

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
快速配置 Sign In with Apple 5年以前  |  7949次阅读
使用 GPUImage 实现一个简单相机 5年以前  |  6058次阅读
APP适配iOS11 5年以前  |  5821次阅读
 目录