数组和链表是程序中常用的两种数据结构,也是面试中常考的面试题之一。然而对于很多人来说,只是模糊的记得二者的区别,可能还记得不一定对,并且每次到了面试的时候,都得把这些的概念拿出来背一遍才行,未免有些麻烦。而本文则会从执行过程图以及性能评测等方面入手,让你更加深入的理解和记忆二者的区别,有了这次深入的学习之后,相信会让你记忆深刻。
在开始(性能评测)之前我们先来回顾一下,什么是数组?
数组的定义如下:
数组(Array)是由相同类型的元素(element)的集合所组成的数据结构,分配一块连续的内存来存储。利用元素的索引(index)可以计算出该元素对应的存储地址。
最简单的数据结构类型是一维数组。例如,索引为 0 到 9 的 32 位整数数组,可作为在存储器地址 2000,2004,2008,...2036 中,存储 10个 变量,因此索引为 i 的元素即在存储器中的 2000+4×i 地址。数组第一个元素的存储器地址称为第一地址或基础地址。
简单来说,数组就是由一块连续的内存组成的数据结构。这个概念中有一个关键词“连续”,它反映了数组的一大特点,就是它必须是由一个连续的内存组成的。
数组的数据结构,如下图所示:
数组添加的过程,如下图所示:
数组的“连续”特征决定了它的访问速度很快,因为它是连续存储的,所以这就决定了它的存储位置就是固定的,因此它的访问速度就很快。比如现在有 10 个房间是按照年龄顺序入住的,当我们知道第一房子住的是 20 岁的人之后,那么我们就知道了第二个房子是 21 岁的人,第五个房子是 24 岁的人......等等。
祸兮福所倚,福兮祸所伏。数组的连续性既有优点又有缺点,优点上面已经说了,而缺点它对内存的要求比较高,必须要找到一块连续的内存才行。
数组的另一个缺点就是插入和删除的效率比较慢,假如我们在数组的非尾部插入或删除一个数据,那么就要移动之后的所有数据,这就会带来一定的性能开销,删除的过程如下图所示:
数组还有一个缺点,它的大小固定,不能动态拓展。
链表是和数组互补的一种数据结构,它的定义如下:
链表(Linked list)是一种常见的基础数据结构,是一种线性表,但是并不会按线性的顺序存储数据,而是在每一个节点里存到下一个节点的指针(Pointer)。由于不必须按顺序存储,链表在插入的时候可以达到 O(1) 的复杂度,比另一种线性表顺序表快得多,但是查找一个节点或者访问特定编号的节点则需要 O(n) 的时间,而顺序表相应的时间复杂度分别是 O(logn) 和 O(1)。
也就说链表是一个无需连续内存存储的数据结构,链表的元素有两个属性,一个是元素的值,另一个是指针,此指针标记了下一个元素的地址。
链表的数据结构,如下图所示:
链表添加的过程,如下图所示:
链表删除的过程,如下图所示:
链表主要分为以下几类:
单向链表中包含两个域,一个信息域和一个指针域。这个链接指向列表中的下一个节点,而最后一个节点则指向一个空值,我们上面所展示的链表就是单向链表。
双向链表也叫双链表,双向链表中不仅有指向后一个节点的指针,还有指向前一个节点的指针,这样可以从任何一个节点访问前一个节点,当然也可以访问后一个节点,以至整个链表。
双向链表的结构如下图所示:
循环链表中第一个节点之前就是最后一个节点,反之亦然。循环链表的无边界使得在这样的链表上设计算法会比普通链表更加容易。
循环链表的结构如下图所示:
有人可能会问,既然已经有单向链表了,那为什么还要双向链表呢?双向链表有什么优势呢?
这个就要从链表的删除说起了,如果单向链表要删除元素的话,不但要找到删除的节点,还要找到删除节点的上一个节点(通常称之为前驱),因为需要变更上一个节点中 next 的指针,但又因为它是单向链表,所以在删除的节点中并没有存储上一个节点的相关信息,那么我们就需要再查询一遍链表以找到上一个节点,这样就带来了一定的性能问题,所以就有了双向链表。
链表的优点大致可分为以下三个:
链表的主要缺点是不能随机查找,必须从第一个开始遍历,查找效率比较低,链表查询的时间复杂度是 O(n)。
了解了数组和链表的基础知识之后,接下来我们正式进入性能评测环节。
在正式开始之前,我们先来明确一下测试目标,我们需要测试的点其实只有 6 个:
因为添加操作和删除操作在执行时间层面基本是一致的,比如数组添加需要移动后面的元素,删除也同样是移动后面的元素;而链表也是如此,添加和删除都是改变自身和相连节点的信息,因此我们就把添加和删除的测试合二为一,用添加操作来进行测试。
测试说明:
ArrayList
,而链表的代表为 LinkedList
,因此我们就用这两个对象来进行测试;import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.Blackhole;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.concurrent.TimeUnit;
@BenchmarkMode(Mode.AverageTime) // 测试完成时间
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(iterations = 2, time = 1, timeUnit = TimeUnit.SECONDS) // 预热次数和时间
@Measurement(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS) // 测试次数和时间
@Fork(1) // fork 1 个线程
@State(Scope.Thread)
public class ArrayOptimizeTest {
private static final int maxSize = 1000; // 测试循环次数
private static final int operationSize = 100; // 操作次数
private static ArrayList<Integer> arrayList;
private static LinkedList<Integer> linkedList;
public static void main(String[] args) throws RunnerException {
// 启动基准测试
Options opt = new OptionsBuilder()
.include(ArrayOptimizeTest.class.getSimpleName()) // 要导入的测试类
.build();
new Runner(opt).run(); // 执行测试
}
@Setup
public void init() {
// 启动执行事件
arrayList = new ArrayList<Integer>();
linkedList = new LinkedList<Integer>();
for (int i = 0; i < maxSize; i++) {
arrayList.add(i);
linkedList.add(i);
}
}
@Benchmark
public void addArrayByFirst(Blackhole blackhole) {
for (int i = 0; i < +operationSize; i++) {
arrayList.add(i, i);
}
// 为了避免 JIT 忽略未被使用的结果计算
blackhole.consume(arrayList);
}
@Benchmark
public void addLinkedByFirst(Blackhole blackhole) {
for (int i = 0; i < +operationSize; i++) {
linkedList.add(i, i);
}
// 为了避免 JIT 忽略未被使用的结果计算
blackhole.consume(linkedList);
}
}
从以上代码可以看出,在测试之前,我们先将 ArrayList
和 LinkedList
进行数据初始化,再从头部开始添加 100 个元素,执行结果如下:
从以上结果可以看出,LinkedList
的平均执行(完成)时间比 ArrayList
平均执行时间快了约 216 倍。
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.Blackhole;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.concurrent.TimeUnit;
@BenchmarkMode(Mode.AverageTime) // 测试完成时间
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(iterations = 2, time = 1, timeUnit = TimeUnit.SECONDS) // 预热次数和时间
@Measurement(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS) // 测试次数和时间
@Fork(1) // fork 1 个线程
@State(Scope.Thread)
public class ArrayOptimizeTest {
private static final int maxSize = 1000; // 测试循环次数
private static final int operationSize = 100; // 操作次数
private static ArrayList<Integer> arrayList;
private static LinkedList<Integer> linkedList;
public static void main(String[] args) throws RunnerException {
// 启动基准测试
Options opt = new OptionsBuilder()
.include(ArrayOptimizeTest.class.getSimpleName()) // 要导入的测试类
.build();
new Runner(opt).run(); // 执行测试
}
@Setup
public void init() {
// 启动执行事件
arrayList = new ArrayList<Integer>();
linkedList = new LinkedList<Integer>();
for (int i = 0; i < maxSize; i++) {
arrayList.add(i);
linkedList.add(i);
}
}
@Benchmark
public void addArrayByMiddle(Blackhole blackhole) {
int startCount = maxSize / 2; // 计算中间位置
// 中间部分进行插入
for (int i = startCount; i < (startCount + operationSize); i++) {
arrayList.add(i, i);
}
// 为了避免 JIT 忽略未被使用的结果计算
blackhole.consume(arrayList);
}
@Benchmark
public void addLinkedByMiddle(Blackhole blackhole) {
int startCount = maxSize / 2; // 计算中间位置
// 中间部分进行插入
for (int i = startCount; i < (startCount + operationSize); i++) {
linkedList.add(i, i);
}
// 为了避免 JIT 忽略未被使用的结果计算
blackhole.consume(linkedList);
}
}
从以上代码可以看出,在测试之前,我们先将 ArrayList
和 LinkedList
进行数据初始化,再从中间开始添加 100 个元素,执行结果如下:
从上述结果可以看出,LinkedList
的平均执行时间比 ArrayList
平均执行时间快了约 54 倍。
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.Blackhole;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.concurrent.TimeUnit;
@BenchmarkMode(Mode.AverageTime) // 测试完成时间
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(iterations = 2, time = 1, timeUnit = TimeUnit.SECONDS) // 预热次数和时间
@Measurement(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS) // 测试次数和时间
@Fork(1) // fork 1 个线程
@State(Scope.Thread)
public class ArrayOptimizeTest {
private static final int maxSize = 1000; // 测试循环次数
private static final int operationSize = 100; // 操作次数
private static ArrayList<Integer> arrayList;
private static LinkedList<Integer> linkedList;
public static void main(String[] args) throws RunnerException {
// 启动基准测试
Options opt = new OptionsBuilder()
.include(ArrayOptimizeTest.class.getSimpleName()) // 要导入的测试类
.build();
new Runner(opt).run(); // 执行测试
}
@Setup
public void init() {
// 启动执行事件
arrayList = new ArrayList<Integer>();
linkedList = new LinkedList<Integer>();
for (int i = 0; i < maxSize; i++) {
arrayList.add(i);
linkedList.add(i);
}
}
@Benchmark
public void addArrayByEnd(Blackhole blackhole) {
int startCount = maxSize - 1 - operationSize;
for (int i = startCount; i < (maxSize - 1); i++) {
arrayList.add(i, i);
}
// 为了避免 JIT 忽略未被使用的结果计算
blackhole.consume(arrayList);
}
@Benchmark
public void addLinkedByEnd(Blackhole blackhole) {
int startCount = maxSize - 1 - operationSize;
for (int i = startCount; i < (maxSize - 1); i++) {
linkedList.add(i, i);
}
// 为了避免 JIT 忽略未被使用的结果计算
blackhole.consume(linkedList);
}
}
以上程序的执行结果为:
从上述结果可以看出,LinkedList
的平均执行时间比 ArrayList
平均执行时间快了约 32 倍。
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.concurrent.TimeUnit;
@BenchmarkMode(Mode.AverageTime) // 测试完成时间
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(iterations = 2, time = 1, timeUnit = TimeUnit.SECONDS) // 预热次数和时间
@Measurement(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS) // 测试次数和时间
@Fork(1) // fork 1 个线程
@State(Scope.Thread)
public class ArrayOptimizeTest {
private static final int maxSize = 1000; // 测试循环次数
private static final int operationSize = 100; // 操作次数
private static ArrayList<Integer> arrayList;
private static LinkedList<Integer> linkedList;
public static void main(String[] args) throws RunnerException {
// 启动基准测试
Options opt = new OptionsBuilder()
.include(ArrayOptimizeTest.class.getSimpleName()) // 要导入的测试类
.build();
new Runner(opt).run(); // 执行测试
}
@Setup
public void init() {
// 启动执行事件
arrayList = new ArrayList<Integer>();
linkedList = new LinkedList<Integer>();
for (int i = 0; i < maxSize; i++) {
arrayList.add(i);
linkedList.add(i);
}
}
@Benchmark
public void findArrayByFirst() {
for (int i = 0; i < operationSize; i++) {
arrayList.get(i);
}
}
@Benchmark
public void findLinkedyByFirst() {
for (int i = 0; i < operationSize; i++) {
linkedList.get(i);
}
}
}
以上程序的执行结果为:
从上述结果可以看出,从头部查询 100 个元素时 ArrayList
的平均执行时间比 LinkedList
平均执行时间快了约 1990 倍。
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.Blackhole;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.concurrent.TimeUnit;
@BenchmarkMode(Mode.AverageTime) // 测试完成时间
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(iterations = 2, time = 1, timeUnit = TimeUnit.SECONDS) // 预热次数和时间
@Measurement(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS) // 测试次数和时间
@Fork(1) // fork 1 个线程
@State(Scope.Thread)
public class ArrayOptimizeTest {
private static final int maxSize = 1000; // 测试循环次数
private static final int operationSize = 100; // 操作次数
private static ArrayList<Integer> arrayList;
private static LinkedList<Integer> linkedList;
public static void main(String[] args) throws RunnerException {
// 启动基准测试
Options opt = new OptionsBuilder()
.include(ArrayOptimizeTest.class.getSimpleName()) // 要导入的测试类
.build();
new Runner(opt).run(); // 执行测试
}
@Setup
public void init() {
// 启动执行事件
arrayList = new ArrayList<Integer>();
linkedList = new LinkedList<Integer>();
for (int i = 0; i < maxSize; i++) {
arrayList.add(i);
linkedList.add(i);
}
}
@Benchmark
public void findArrayByMiddle() {
int startCount = maxSize / 2;
int endCount = startCount + operationSize;
for (int i = startCount; i < endCount; i++) {
arrayList.get(i);
}
}
@Benchmark
public void findLinkedyByMiddle() {
int startCount = maxSize / 2;
int endCount = startCount + operationSize;
for (int i = startCount; i < endCount; i++) {
linkedList.get(i);
}
}
}
以上程序的执行结果为:
从上述结果可以看出,从中间查询 100 个元素时 ArrayList
的平均执行时间比 LinkedList
平均执行时间快了约 28089 倍,真是恐怖。
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.concurrent.TimeUnit;
@BenchmarkMode(Mode.AverageTime) // 测试完成时间
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(iterations = 2, time = 1, timeUnit = TimeUnit.SECONDS) // 预热次数和时间
@Measurement(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS) // 测试次数和时间
@Fork(1) // fork 1 个线程
@State(Scope.Thread)
public class ArrayOptimizeTest {
private static final int maxSize = 1000; // 测试循环次数
private static final int operationSize = 100; // 操作次数
private static ArrayList<Integer> arrayList;
private static LinkedList<Integer> linkedList;
public static void main(String[] args) throws RunnerException {
// 启动基准测试
Options opt = new OptionsBuilder()
.include(ArrayOptimizeTest.class.getSimpleName()) // 要导入的测试类
.build();
new Runner(opt).run(); // 执行测试
}
@Setup
public void init() {
// 启动执行事件
arrayList = new ArrayList<Integer>();
linkedList = new LinkedList<Integer>();
for (int i = 0; i < maxSize; i++) {
arrayList.add(i);
linkedList.add(i);
}
}
@Benchmark
public void findArrayByEnd() {
for (int i = (maxSize - operationSize); i < maxSize; i++) {
arrayList.get(i);
}
}
@Benchmark
public void findLinkedyByEnd() {
for (int i = (maxSize - operationSize); i < maxSize; i++) {
linkedList.get(i);
}
}
}
以上程序的执行结果为:
从上述结果可以看出,从尾部查询 100 个元素时 ArrayList
的平均执行时间比 LinkedList
平均执行成时间快了约 1839 倍。
接下来我们再来测试一下,正常情况下我们从头开始添加数组和链表的性能对比,测试代码如下:
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.Blackhole;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.concurrent.TimeUnit;
@BenchmarkMode(Mode.AverageTime) // 测试完成时间
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(iterations = 2, time = 1, timeUnit = TimeUnit.SECONDS) // 预热次数和时间
@Measurement(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS) // 测试次数和时间
@Fork(1) // fork 1 个线程
@State(Scope.Thread)
public class ArrayOptimizeTest {
private static final int maxSize = 1000; // 测试循环次数
private static ArrayList<Integer> arrayList;
private static LinkedList<Integer> linkedList;
public static void main(String[] args) throws RunnerException {
// 启动基准测试
Options opt = new OptionsBuilder()
.include(ArrayOptimizeTest.class.getSimpleName()) // 要导入的测试类
.build();
new Runner(opt).run(); // 执行测试
}
@Benchmark
public void addArray(Blackhole blackhole) { // 中间删数组表
arrayList = new ArrayList<Integer>();
for (int i = 0; i < maxSize; i++) {
arrayList.add(i);
}
// 为了避免 JIT 忽略未被使用的结果计算
blackhole.consume(arrayList);
}
@Benchmark
public void addLinked(Blackhole blackhole) { // 中间删除链表
linkedList = new LinkedList<Integer>();
for (int i = 0; i < maxSize; i++) {
linkedList.add(i);
}
// 为了避免 JIT 忽略未被使用的结果计算
blackhole.consume(linkedList);
}
}
以上程序的执行结果为:
接下来,我们将添加的次数调至 1w,测试结果如下:
最后,我们再将添加次数调至 10w,测试结果如下:
从以上结果可以看出在正常情况下,从头部依次开始添加元素时,他们性能差别不大。
本文我们介绍了数组的概念以及它的优缺点,同时还介绍了单向链表、双向链表及循环链表的概念以及链表的优缺点。我们在最后的评测中可以看出,当我们正常从头部依次添加元素时,链表和数组的性能差不不大。但当数据初始化完成之后,我们再进行插入操作时,尤其是从头部插入时,因为数组要移动之后的所有元素,因此性能要比链表低很多;但在查询时性能刚好相反,因为链表要遍历查询,并且 LinkedList
是双向链表,所以在中间查询时性能要比数组查询慢了上万倍(查询 100 个元素),而两头查询(首部和尾部)时,链表也比数组慢了将近 1000 多倍(查询 100 个元素),因此在查询比较多的场景中,我们要尽量使用数组,而在添加和删除操作比较多时,我们应该使用链表结构。
数组和链表的操作时间复杂度,如下表所示:
1.查询 数组:O(1) 链表:O(n)
2.插入 数组:O(n) 链表:O(1)
3.删除 数组:O(n) 链表:O(1)
本文由哈喽比特于4年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/4O9MNTqS8eulExeY-RFKag
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。