PyCon 是全世界最大的以 Python 编程语言 为主题的技术大会,大会由 Python 社区组织,每年举办一次。在 Python 2017 上,Instagram 的工程师们带来了一个有关 Python 在 Instagram 的主题演讲,同时还分享了 Instagram 如何将整个项目运行环境升级到 Python 3 的故事。本文为该次演讲的内容摘要,由 Python 爱好者朱雷撰写。
Instagram 是一款移动端的照片与视频分享软件,由 Kevin Systrom 和 Mike Krieger 在 2010 年创办。Instagram 在发布后开始快速流行。于 2012 年被 Facebook 以 10 亿美元的价格收购。而当时 Instagram 的员工仅有区区 13 名。
如今,Instagram 的总注册用户达到 30 亿,月活用户超过 7 亿 (作为对比,微信最新披露的月活跃用户为 9.38 亿)。而令人吃惊的是,这么高的访问量背后,竟完全是由以速度慢著称的 Python + Django 支撑。
Instagram 选择 Django 的原因很简单,Instagram 的两位创始人 (Kevin Systrom and Mike Krieger) 都是产品经理出身。在他们想要创造 Instagram 时,Django 是他们所知道的最稳定和成熟的技术之一。
时至今日,即使已经拥有超过 30 亿的注册用户。Instagram 仍然是 Python 和 Django 的重度使用者。Instagram 的工程师 Hui Ding 说到:『一直到用户 ID 已经超过了 32bit int 的限额(约为 20 亿),Django 本身仍然没有成为我们的瓶颈所在。』
不过,除了使用 Django 的原生功能外,Instagram 还对 Django 做了很多定制化工作:
Instagram 的联合创始人 Mike Krieger 说过:『我们的用户根本不关心 Instagram 使用了哪种关系数据库,他们当然也不关心 Instagram 是用什么编程语言开发的。』
所以,Python 这种 简单 而且 实用至上 的编程语言最终赢得了 Instagram 的青睐。他们认为,使用 Python 这种简单的语言有助于塑造 Instagram 的工程师文化,那就是:
但是,即使使用 Python 语言有这么多好处,它还是很慢,不是吗?
不过,这对于 Instagram 不是问题,因为他们认为:『Instagram 的最大瓶颈在于开发效率,而不是代码的执行效率』。
At Instagram, our bottleneck is development velocity, not pure code execution.
所以,最终的结论是:你完全可以使用 Python 语言来实现一个超过几十亿用户使用的产品,而根本不用担心语言或框架本身的性能瓶颈。
但是,即使是选用了拥有诸多好处的 Python 和 Django。在 Instagram 的用户数迅速增长的过程中,性能问题还是出现了:服务器数量的增长率已经慢慢的超过了用户增长率。Instagram 是怎么应对这个问题的呢?
他们使用了这些手段来缓解性能问题:
除了上面这些手段,他们还在探索异步 IO 以及新的 Python Runtime 所能带来的性能可能性。
在相当长的一段时间,Instagram 都跑在 Python 2.7 + Django 1.3 的组合之上。在这个已经落后社区很多年的环境上,他们的工程师们还打了非常非常多的小 patch。难道他们要被永远卡在这个版本上吗?
所以,在经过一系列的讨论后,他们最终做出一个重大的决定:升级到 Python 3!!
事实上,Instagram 目前已经完成了将运行环境迁移到 Python 3 的工作 - 他们的整套服务已经在 Python 3 上跑了好几个月了。那么他们是怎么做到的呢?接下来便是由 Instagram 工程师 Lisa guo 带来的 Instagram 如何迁移到 Python 3 的故事。
对于 Instagram 来说,下面这些因素是推动他们将运行环境迁移到 Python 3 的主要原因:
1.新特性:类型注解 Type Annotations
看看下面这段代码:
def compose_from_max_id(max_id):
'''@param str max_id'''
图中函数的 max_id 参数究竟是什么类型呢?int?tuple?或是 list? 等等,函数文档里面说它是 str 类型。
但随着时间推移,万一这个参数的类型发生变化了呢?如果某位粗心的工程师修改代码的同时忘了更新文档,那就会给函数的使用者带来很大麻烦,最终还不如没有注释呢。
2、性能
Instagram 的整个 Django Stack 都跑在 uwsgi 之上,全部使用了同步的网络 IO。这意味着同一个 uwsgi 进程在同一时间只能接收并处理一个请求。这让如何调优每台机器上应该运行的 uwsgi 进程数成了一个麻烦事:
为了更好利用 CPU,使用更多的进程数?但那样会消耗大量的内存。而过少的进程数量又会导致 CPU 不能被充分利用。
为此,他们决定跳过 Python 2 中哪些蹩脚的异步 IO 实现 (可怜的 gevent、tornado、twisted 众),直接升级到 Python 3,去探索标准库中的 asyncio 模块所能带来的可能性。
3、社区
因为 Python 社区已经停止了对 Python 2 的支持。如果把整个运行环境升级到 Python 3,Instagram 的工程师们就能和 Python 社区走的更近,可以更好的把他们的工作回馈给社区。
迁移方案
在 Instagram,进行 Python 3 的迁移需要必须满足两个前提条件:
但是,在 Instagram 的开发环境中,要满足上面这两点来完成迁移到 Python 3.6 这种庞大的工程是非常困难的。
基于主分支的开发流程
即便使用了以多分支功能著称的 git,Instagram 所有的开发工作都是主要在 master 分支上进行的,Instagram 所奉行的开发哲学是:『不管是多大的新特性或代码重构,都应该拆解成较小的 Commit 来进行。』
那些被合并进 master 分支的代码,都将在一个小时内被发布到线上环境。而这样的发布过程每天将会发生上百次。在这么频繁的发布频率下,如何在满足之前的那两个前提下来完成迁移变得尤其困难。
被弃用的迁移方案
创建一个新分支很多人在处理这类问题时,第一个蹦进脑子的想法就是:『让我们创建一个分支,当我们开发完后,再把分支合并进来』。但在 Instagram 这么高的迭代频率上,使用一个独立分支并不是好主意:
挨个替换接口
还有一个方案就是,挨个替换 Instagram 的 API 接口。但是 Instagram 的不同接口共享着很多通用模块。这个方案要实施起来也非常困难。
微服务
还有一个方案就是将 Instagram 改造成微服务架构。通过将那些通用模块重写成 Python 3 版本的微服务来一步步完成迁移工作。
但是这个方案需要重新组织海量的代码。同时,当发生在进程内的函数调用变成 RPC 后 ,整个站点的延迟会变大。此外,更多的微服务也会引入更高的部署复杂度。
所以,既然 Instagram 的开发哲学是:小步前进,快速迭代。他们最终决定的方案是:一步一步来,最终让 master 分支上的代码同时兼容 Python 2 和 Python 3 。
既然要让整个 codebase 同时兼容 Python 2 和 Python 3,那么首先要符合这点的就是那些被大量使用的第三方 package。针对第三方 package,Instagram 做到了下面几点:
在代码的迁移过程中,他们使用了工具 modernize 来帮助他们。
使用 modernize 时,有一个小技巧:每次修复多个文件的一个兼容问题,而不是一下修复一个文件中的多个兼容问题。这样可以让 Code Review 过程简单很多,因为 Reviewer 每次只需要关注一个问题。
对于 Python 这种灵活性极强的动态语言来说,除了真正去执行代码外,几乎没有其他比较好的检查代码错误的手段。
前面提到,Instagram 所有被合并到 master 的代码提交会在一个小时内上线到线上环境,但这不是没有前提条件的。在上线前,所有的提交都需要通过成千上万个单元测试。
于是,他们开始加入 Python 3 来执行所有的单元测试。一开始,只有极少数的单元测试能够在 Python 3 环境下通过,但随着 Instagram 的工程师们不断的修复那些失败的单元测试,最终所有的单元测试都可以在 Python 3 环境下成功执行。
但是,单元测试也是有局限性的:
所以,当所有的单元测试都被修复后,他们开始在线上正式使用 Python 3 来运行服务。
这个过程并不是一蹴而就的。首先,所有的 Instagram 工程师开始访问到这些使用 Python 3 来执行的新服务,然后是 Facebook 的所有雇员,随后是 0.1%、20% 的用户,最终 Python 3 覆盖到了所有的 Instagram 用户。
Instagram 在迁移到 Python 3 时碰到很多问题,下面是最典型的几个:
Unicode 相关的字符串问题
Python 3 相比 Python 2 最大的改动之一,就是在语言内部对 unicode 的处理。
在 Python 2 中,文本类型 (也就是 unicode) 和二进制类型 (也就是 str) 的边界非常模糊。很多函数的参数既可以是文本,也可以是二进制。但是在 Python 3 中,文本类型和二进制类型的字符串被完全的区分开了。
于是,下面这段在 Python 2 下可以正常运行的代码在 Python 3 下就会报错:
mymac = hmac.new('abc') TypeError: key: expected bytes or bytearray, but got 'str'
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tQT44Q0M-1570179360052)
()]
解决办法其实很简单,只要加上判断:如果 value 是文本类型,就将其转换为二进制。如下所示:
value = 'abc'if isinstance(value, six.text_type): value = value.encode(encoding='utf-8') mymac = hmac.new(value)
但是,在整个代码库中,像上面这样的情况非常多。作为开发人员,如果需要在调用每个函数时都要想想:这里到底是应该编码成二进制,或者是解码成文本呢?将会是非常大的负担。
于是 Instagram 封装了一些名为 ensure_str()、ensure_binary()、ensure_text() 的帮助函数,开发人员只需对那些不确定类型的字符串,使用这些帮助函数先做一次转换就好。
mymac = hmac.new(ensure_binary('abc'))
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ls5jOGEl-1570179360053)
()]
不同 Python 版本的 pickle 差异
Instagram 的代码中大量使用了 pickle。比如用它序列化某个对象,然后将其存储在 memcache 中。如下面的代码所示:
memcache_data = pickle.dumps(data, pickle.HIGHEST_PROTOCOL)data = pickle.loads(memcache_data)
问题在于,Python 2 与 Python 3 的 pickle 模块是有差别的。 如果上文的第一行代码,刚好是由 Python 3 运行的服务进行序列化后存入 memcache。而反序列化的过程却是由 Python 2 进行,那代码运行时就会出现下面的错误:
ValueError: unsupported pickle protocol: 4
这是由于在 Python 3 中,pickle.HIGHEST_PROTOCOL 的值为 4,而 Python 2 中的的 pickle 最高支持的版本号却是 2。那么如何解决这个问题呢?
Instagram 最终选择让 Python 2 和 Python 3 使用完全不同的 namespace 来访问 memcache。通过将二者的数据读写完全隔开来解决这个问题。
迭代器
在 Python 3 中,很多内置函数被修改成了只返成迭代器 Iterator:
map() filter() dict.items()
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GLVPUDc0-1570179360059)
()]
迭代器有诸多好处,最大的好处就是,使用迭代器不需要一次性分配大量内存,所以它的内存效率比较高。
但是迭代器有一个天然的特点,当你对某个迭代器做了一次迭代,访问完它的内容后,就没法再次访问那些内容了。迭代器中的所有内容都只能被访问一次。
在 Instagram 的 Python 3 迁移过程中,就因为迭代器的这个特性被坑了一次,看看下面这段代码:
CYTHON_SOURCES = [a.pyx, b.pyx, c.pyx] builds = map(BuildProcess, CYTHON_SOURCES)while any(not build.done() for build in builds): pending = [build for build in builds if not build.started()] <do some work>
这段代码的用处是挨个编译 Cython 源文件。当他们把运行环境切换到 Python 3 后,一个奇怪的问题出现了:CYTHON_SOURCES 中的第一个文件永远都被跳过了编译。为什么呢?
这都是迭代器的锅。在 Python 3 中,map() 函数不再返回整个 list,而是返回一个迭代器。
于是,当第二行代码生成 builds 这个迭代器后,第三行代码的 while 循环迭代了 builds,刚好取出了第一个元素。于是之后的 pending 对象便里面永远少了那第一个元素。
这个问题解决起来也挺简单的,你只要手动的吧 builds 转换成 list 就可以了:
builds = list(map(BuildProcess, CYTHON_SOURCES))
但是这类 bug 非常难定位到。如果用户的 feeds 里面永远少了那最新的第一条,用户很少会注意到。
字典的顺序
看看下面这段代码:
>>> testdict = {'a': 1, 'b': 2, 'c': 3}>>> json.dumps(testdict)
它会输出什么结果呢?
# Python2'{"a": 1, "c": 3, "b": 2}'# Python 3.5.1'{"c": 3, "b": 2, "a": 1}' # or'{"c": 3, "a": 1, "b": 2}'# Python 3.6'{"a": 1, "b": 2, "c": 3}'
在不同的 Python 版本下,这个 json dumps 的结果是完全不一样的。甚至在 3.5.1 中,它会完全随机的返回两个不同的结果。Instagram 有一段判断配置文件是否发生变动的模块,就是因为这个原因出了问题。
这个问题的解决办法是,在调用 json.dumps 传入 sort_keys=True 参数:
>>> json.dumps(testdict, sort_keys=True)'{"a": 1, "b": 2, "c": 3}'
当 Instagram 解决了这些奇奇怪怪的版本差异问题后,还有一个巨大的谜题困扰着他们:性能问题。
在 Instagram,他们使用两个主要指标来衡量他们的服务性能:
所以,当所有的迁移工作完成后,他们非常惊喜的发现:第一个性能指标,每次请求产生的 CPU 指令数居然足足下降了 12% !!!
但是,按理说第二个指标 - 每秒请求数也应该获得接近 12% 的提升。不过最后的变化却是 0%。究竟是出了什么问题呢?
他们最终定位到,是由于不同 Python 版本下的内存优化配置不同,导致 CPU 指令数下降带来的性能提升被抵消了。那为什么不同 Python 版本下的内存优化配置会不一样呢?
这是他们用来检查 uwsgi 配置的代码:
if uwsgi.opt.get('optimize_mem', None) == 'True': optimize_mem()
注意到那段... ... == 'True'了吗?在 Python 3 中,这个条件判断总是不会被满足。问题就在于 unicode。在将代码中的'True'换成 b'True'(也就是将文本类型换成二进制,这种判断在 Python 2 中完全不区分的)后,问题解决了。
所以,最终因为加上了一个小小的字母 'b',程序的整体性能提升了 12%。
在今年二月份,Instagram 的后端代码的运行环境完全切换到了 Python 3 下:
当所有的代码都都迁移到 Python 3 运行环境后:
同时,在整个迁移期间,Instagram 的月活用户经历了从 4 亿到 6 亿 的巨大增长。产品也发布了评论过滤、直播等非常多新功能。
那么,那几个最开始驱动他们迁移到 Python 3 的目的呢?
类型注解:Instagram 的整个 codebase 里已经有 2% 的代码添加上了类型注解,同时他们还开发了一些工具来辅助开发者添加类型提示
asyncio:他们在单个接口中利用 asynio 平行的去做多件事情,最终降低了 20-30% 的请求延迟。
社区:他们与 Intel 的工程师联合,帮助他们更好的对 CPU 利用率进行调优。同时还开发了很多新的工具,帮助他们进行性能调优
Instagram 的演讲视频时间不长,但是内容很丰富,在编写此文前,我完全没有想到最终的文章会这么长。
那么总结一下,Instagram 的视频可以给我们哪些启示呢?
来自:https://www.jianshu.com/p/e18e01ad7ad9
本文由哈喽比特于4年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/F07VFF0PoMUvo93WxZQKbQ
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。