深入探究Immutable.js的实现机制(一)

发表于 4年以前  | 总阅读数:699 次

Immutable.js 由 Facebook 花费 3 年时间打造,为前端开发提供了很多便利。我们知道 Immutable.js 采用了持久化数据结构,保证每一个对象都是不可变的,任何添加、修改、删除等操作都会生成一个新的对象,且通过结构共享等方式大幅提高性能。

网上已经有很多文章简单介绍了 Immutable.js 的原理,但大多浅尝辄止,针对 Clojure 或 Go 中持久化数据结构实现的文章倒是有一些。下面结合多方资料、Immutable.js 源码以及我自己的理解,深入一些探究 Immutable.js 实现机制。

本系列文章可能是目前关于 Immutable.js 原理最深入、全面的文章,欢迎点赞收藏σ`∀´)σ。

Immutable.js 部分参考了 Clojure 中的PersistentVector的实现方式,并有所优化和取舍,该系列第一篇的部分内容也是基于它,想了解的可以阅读这里(共五篇,这是其一)

简单的例子

在深入研究前,我们先看个简单的例子:

let map1 = Immutable.Map({});

for (let i = 0; i < 800; i++) {
    map1 = map1.set(Math.random(), Math.random());
}

console.log(map1);

这段代码先后往map里写入了800对随机生成的key和value。我们先看一下控制台的输出结果,对它的数据结构有个大致的认知(粗略扫一眼就行了):

可以看到这是一个树的结构,子节点以数组的形式放在nodes属性里,nodes的最大长度似乎是 32 个。了解过 bitmap 的人可能已经猜到了这里bitmap属性是做什么的,它涉及到对树宽度的压缩,这些后面会说。

其中一个节点层层展开后长这样:

这个ValueNode存的就是一组值了,entry[0]是key,entry[1]是value。目前大致看个形状就行了,下面我们会由浅入深逐步揭开它的面纱。(第二篇文章里会对图中所有属性进行解释)

基本原理

我们先看下维基对于持久化数据结构的定义:

In computing, a persistent data structure is a data structure that always preserves the previous version of itself when it is modified.

通俗点解释就是,对于一个持久化数据结构,每次修改后我们都会得到一个新的版本,且旧版本可以完好保留。

Immutable.js 用树实现了持久化数据结构,先看下图这颗树:

假如我们要在g下面插入一个节点h,如何在插入后让原有的树保持不变?最简单的方法当然是重新生成一颗树:

但这样做显然是很低效的,每次操作都需要生成一颗全新的树,既费时又费空间,因而有了如下的优化方案:

我们新生成一个根节点,对于有修改的部分,把相应路径上的所有节点重新生成,对于本次操作没有修改的部分,我们可以直接把相应的旧的节点拷贝过去,这其实就是结构共享。这样每次操作同样会获得一个全新的版本(根节点变了,新的a!==旧的a),历史版本可以完好保留,同时也节约了空间和时间。

至此我们发现,用树实现持久化数据结构还是比较简单的,Immutable.js提供了多种数据结构,比如回到开头的例子,一个map如何成为持久化数据结构呢?

Vector Trie

实际上对于一个map,我们完全可以把它视为一颗扁平的树,与上文实现持久化数据结构的方式一样,每次操作后生成一个新的对象,把旧的值全都依次拷贝过去,对需要修改或添加的属性,则重新生成。这其实就是Object.assign,然而这样显然效率很低,有没有更好的方法呢?

在实现持久化数据结构时,Immutable.js 参考了Vector Trie这种数据结构(其实更准确的叫法是persistent bit-partitioned vector triebitmapped vector trie,这是Clojure里使用的一种数据结构,Immutable.js 里的相关实现与其很相似),我们先了解下它的基本结构。

假如我们有一个 map ,key 全都是数字(当然你也可以把它理解为数组){0: ‘banana’, 1: ‘grape’, 2: ‘lemon’, 3: ‘orange’, 4: ‘apple’},为了构造一棵二叉Vector Trie,我们可以先把所有的key转换为二进制的形式:{‘000’: ‘banana’, ‘001’: ‘grape’, ‘010’: ‘lemon’, ‘011’: ‘orange’, ‘100’: ‘apple’},然后如下图构建Vector Trie 可以看到,Vector Trie的每个节点是一个数组,数组里有01两个数,表示一个二进制数,所有值都存在叶子节点上,比如我们要找001的值时,只需顺着0``0``1找下来,即可得到grape。那么想实现持久化数据结构当然也不难了,比如我们想添加一个5: ‘watermelon’

可见对于一个 key 全是数字的map,我们完全可以通过一颗Vector Trie来实现它,同时实现持久化数据结构。如果key不是数字怎么办呢?用一套映射机制把它转成数字就行了。Immutable.js 实现了一个hash函数,可以把一个值转换成相应数字。

这里为了简化,每个节点数组长度仅为2,这样在数据量大的时候,树会变得很深,查询会很耗时,所以可以扩大数组的长度,Immutable.js 选择了32。为什么不是31?40?其实数组长度必须是2的整数次幂,这里涉及到实现Vector Trie时的一个优化,接下来我们先研究下这点。

下面的部分内容对于不熟悉进制转换和位运算的人来说可能会相对复杂一些,不过只要认真思考还是能搞通的。

数字分区(Digit partitioning)

数字分区指我们把一个 key 作为数字对应到一棵前缀树上,正如上节所讲的那样。假如我们有一个 key 9128,以 7 为基数,即数组长度是 7,它在Vector Trie里是这么表示的:

需要5层数组,我们先找到3这个分支,再找到5,之后依次到0。为了依次得到这几个数字,我们可以预先把9128转为7进制的35420,但其实没有这个必要,因为转为 7 进制形式的过程就是不断进行除法并取余得到每一位上的数,我们无须预先转换好,类似的操作可以在每一层上依次执行。运用进制转换相关的知识,我们可以采用这个方法key / radixlevel - 1 % radix得到每一位的数(为了简便,本文除代码外所有/符号皆表示除法且向下取整),其中radix是每层数组的长度,即转换成几进制,level是当前在第几层,即第几位数。比如这里key9128radix7,一开始level5,通过这个式子我们可以得到第一层的数3

代码实现如下:

const RADIX = 7;

function find(key) {
  let node = root; // root是根节点,在别的地方定义了

  // depth是当前树的深度。这种计算方式跟上面列出的式子是等价的,但可以避免多次指数计算。这个size就是上面的radix^level - 1
  for (let size = Math.pow(RADIX, (depth - 1)); size > 1; size /= RADIX) {
    node = node[Math.floor(key / size) % RADIX];
  }

  return node[key % RADIX];
}

位分区(Bit Partitioning)

显然,以上数字分区的方法是有点耗时的,在每一层我们都要进行两次除法一次取模,显然这样并不高效,位分区就是对其的一种优化。

位分区是建立在数字分区的基础上的,所有以2的整数次幂(2,4,8,16,32…)为基数的数字分区前缀树,都可以转为位分区。基于一些位运算相关的知识,我们就能避免一些耗时的计算。

数字分区把 key 拆分成一个个数字,而位分区把 key 分成一组组 bit。以一个 32 路的前缀树为例,数字分区的方法是把 key 以 32 为基数拆分(实际上就是 32 进制),而位分区是把它以 5 个 bits 拆分,因为32 = 25,那我们就可以把 32 进制数的每一位看做 5 个二进制位 。实际上就是把 32 进制数当成 2 进制进行操作,这样原本的很多计算就可以用更高效的位运算的方式代替。因为现在基数是 32,即radix为 32,所以前面的式子现在是key / 32level - 1 % 32,而既然32 =``25,那么该式子可以写成这样key / 25 × (level - 1) % 25。根据位运算相关的知识我们知道a / 2n === a >>> na % 2n === a & (2n - 1)。这样我们就能通过位运算得出该式子的值。

如果你对位运算不太熟悉的话,大可不看上面的式子,举个例子就好理解了:比如数字666666的二进制形式是10100 01011 00001 01010,这是一个20位的二进制数。如果我们要得到第二层那五位数01011,我们可以先把它右移>>>(左侧补0)10位,得到00000 00000 10100 01011,再&一下00000 00000 00000 11111,就得到了01011。这样我们可以得到下面的代码:

const BITS = 5;
const WIDTH = 1 << BITS, // 25 = 32
const MASK = WIDTH - 1; // 31,即11111

function find(key) {
  let node = root; 

  for (let bits = (depth - 1) * BITS; bits > 0; bits -= BITS) {
    node = node[(key >>> bits) & MASK];
  }

  return node[key & MASK];
}

这样我们每次查找的速度就会得到提升。可以看一张图进行理解,为了简化展示,假设我们用了一个4路前缀树,4 = 22,所以用两位二进制数分区。对于626,查找过程如下:

626的二进制形式是10 01 11 00 10,所以通过上面的位运算方法,我们便可以高效地依次得到1001

源码

说了这么多,我们看一下 Immutable.js 的源码吧。我们主要看一下查找的部分就够了,这是Vector Trie的核心。

get(shift, keyHash, key, notSetValue) {
  if (keyHash === undefined) {
    keyHash = hash(key);
  }
  const idx = (shift === 0 ? keyHash : keyHash >>> shift) & MASK;
  const node = this.nodes[idx];
  return node
    ? node.get(shift + SHIFT, keyHash, key, notSetValue)
    : notSetValue;
}

可以看到, Immutable.js 也正是采用了位分区的方式,通过位运算得到当前数组的 index 选择相应分支。(到这里我也不由赞叹,短短10行代码包含了多少思想呀)

不过它的实现方式与上文所讲的有一点不同,上文中对于一个 key ,我们是“正序”存储的,比如上图那个626的例子,我们是从根节点往下依次按照10 01 11 00 10去存储,而 Immutable.js 里则是“倒序”,按照10 00 11 01 10存储。所以通过源码这段你会发现 Immutable.js 查找时先得到的是 key 末尾的 SHIFT 个 bit ,然后再得到它们之前的 SHIFT 个 bit ,依次往前下去,而前面我们的代码是先得到 key 开头的 SHIFT 个 bit,依次往后。

用这种方式的原因之一是key的大小(二进制长度)不固定。

时间复杂度

因为采用了结构共享,在添加、修改、删除操作后,我们避免了将 map 中所有值拷贝一遍,所以特别是在数据量较大时,这些操作相比Object.assign有明显提升。

然而,查询速度似乎减慢了?我们知道 map 里根据 key 查找的速度是O(1),这里由于变成了一棵树,查询的时间复杂度变成了O(log N),因为是 32 叉树,所以准确说是O(log32 N)

等等 32 叉树?这棵树可不是一般地宽啊,Javascript里对象可以拥有的key的最大数量一般不会超过232个(ECMA-262第五版里定义了JS里由于数组的长度本身是一个 32 位数,所以数组长度不应大于 232 - 1 ,JS里对象的实现相对复杂,但大部分功能是建立在数组上的,所以在大部分场景下对象里 key 的数量不会超过 232 - 1。相关讨论见这里。而且假设我们有 232 个值、每个值是一个32bit的 Number ,只算这些值的话总大小也有17g了,前端一般是远不需要操作这个量级的数据的),这样就可以把查找的时间复杂度当做是“O(log32 232)”,差不多就是“O(log 7)”,所以我们可以认为在实际运用中,5bits (32路)的 Vector Trie 查询的时间复杂度是常数级的,32 叉树就是用了空间换时间。

空间…这个 32 叉树占用的空间也太大了吧?即便只有三层,我们也会有超过32 × 32 × 32 = 32768个节点。当然 Immutable.js 在具体实现时肯定不会傻乎乎的占用这么大空间,它对树的高度和宽度都做了“压缩”,此外,还对操作效率进行了其它一些优化。相关内容我们在下一篇里讨论。

如果文章里有什么问题欢迎指正。

第二篇里会介绍进一步优化后的不可变数据结构—— HAMT (“压缩”空间占用),以及在不可变数据结构中实现“临时”的可变结构—— Transient ,还有老生常谈的对于 hash 冲突的解决方式。

参考:

  • https://io-meter.com/2016/09/03/Functional-Go-persist-datastructure-intro
  • https://io-meter.com/2016/09/03/Functional-Go-persist-datastructure-intro
  • https://cdn.oreillystatic.com/en/assets/1/event/259/Immutable
  • %20data%20structures%20for%20functional%20JavaScript%20Presentation.pdf
  • https://michael.steindorfer.name/publications/oopsla15.pdf
  • https://github.com/facebook/immutable-js/blob/e65e5af806ea23a32ccf8f56c6fabf39605bac80/src

本文由哈喽比特于4年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/CsHbUNy_DCWYCx04fw1a5g

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237231次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8065次阅读
 目录