Java 8 新特性系列文章索引。
我们都知道 Lambda
和 Stream 是 Java 8 的两大亮点功能,在前面的文章里已经介绍过 Lambda
相关知识,这次介绍下 Java 8 的 Stream 流操作。它完全不同于 java.io 包的 Input/Output Stream ,也不是大数据实时处理的 Stream 流。这个 Stream 流操作是 Java 8 对集合操作功能的增强,专注于对集合的各种高效、便利、优雅的聚合操作。借助于 Lambda
表达式,显著的提高编程效率和可读性。且 Stream 提供了并行计算模式,可以简洁的编写出并行代码,能充分发挥如今计算机的多核处理优势。
在使用 Stream 流操作之前你应该先了解 Lambda
相关知识,如果还不了解,可以参考之前文章:还看不懂同事的代码?Lambda 表达式、函数接口了解一下 。
Stream 不同于其他集合框架,它也不是某种数据结构,也不会保存数据,但是它负责相关计算,使用起来更像一个高级的迭代器。在之前的迭代器中,我们只能先遍历然后在执行业务操作,而现在只需要指定执行什么操作, Stream 就会隐式的遍历然后做出想要的操作。另外 Stream 和迭代器一样的只能单向处理,如同奔腾长江之水一去而不复返。
由于 Stream 流提供了惰性计算和并行处理的能力,在使用并行计算方式时数据会被自动分解成多段然后并行处理,最后将结果汇总。所以 Stream 操作可以让程序运行变得更加高效。
Stream 流的使用总是按照一定的步骤进行,可以抽象出下面的使用流程。
数据源(source) -> 数据处理/转换(intermedia) -> 结果处理(terminal )
数据源(source)
也就是数据的来源,可以通过多种方式获得 Stream 数据源,下面列举几种常见的获取方式。
数据处理/转换(intermedia)
步骤可以有多个操作,这步也被称为intermedia
(中间操作)。在这个步骤中不管怎样操作,它返回的都是一个新的流对象,原始数据不会发生任何改变,而且这个步骤是惰性计算
处理的,也就是说只调用方法并不会开始处理,只有在真正的开始收集结果时,中间操作才会生效,而且如果遍历没有完成,想要的结果已经获取到了(比如获取第一个值),会停止遍历,然后返回结果。惰性计算
可以显著提高运行效率。
数据处理演示。
@Test
public void streamDemo(){
List<String> nameList = Arrays.asList("Darcy", "Chris", "Linda", "Sid", "Kim", "Jack", "Poul", "Peter");
// 1. 筛选出名字长度为4的
// 2. 名字前面拼接 This is
// 3. 遍历输出
nameList.stream()
.filter(name -> name.length() == 4)
.map(name -> "This is "+name)
.forEach(name -> System.out.println(name));
}
// 输出结果
// This is Jack
// This is Poul
数据处理/转换
操作自然不止是上面演示的过滤 filter
和 map
映射两种,另外还有 map (mapToInt, flatMap 等)、 filter、 distinct、 sorted、 peek、 limit、 skip、 parallel、 sequential、 unordered 等。
结果处理(terminal )
是流处理的最后一步,执行完这一步之后流会被彻底用尽,流也不能继续操作了。也只有到了这个操作的时候,流的数据处理/转换
等中间过程才会开始计算,也就是上面所说的惰性计算
。结果处理
也必定是流操作的最后一步。
常见的结果处理
操作有 forEach、 forEachOrdered、 toArray、 reduce、 collect、 min、 max、 count、 anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 iterator 等。
下面演示了简单的结果处理
的例子。
/**
* 转换成为大写然后收集结果,遍历输出
*/
@Test
public void toUpperCaseDemo() {
List<String> nameList = Arrays.asList("Darcy", "Chris", "Linda", "Sid", "Kim", "Jack", "Poul", "Peter");
List<String> upperCaseNameList = nameList.stream()
.map(String::toUpperCase)
.collect(Collectors.toList());
upperCaseNameList.forEach(name -> System.out.println(name + ","));
}
// 输出结果
// DARCY,CHRIS,LINDA,SID,KIM,JACK,POUL,PETER,
有一种 Stream 操作被称作 short-circuiting
,它是指当 Stream 流无限大但是需要返回的 Stream 流是有限的时候,而又希望它能在有限的时间内计算出结果,那么这个操作就被称为short-circuiting
。例如 findFirst
操作。
Stream 流在使用时候总是借助于 Lambda
表达式进行操作,Stream 流的操作也有很多种方式,下面列举的是常用的 11 种操作。
获取 Stream 的几种方式在上面的 Stream 数据源里已经介绍过了,下面是针对上面介绍的几种获取 Stream 流的使用示例。
@Test
public void createStream() throws FileNotFoundException {
List<String> nameList = Arrays.asList("Darcy", "Chris", "Linda", "Sid", "Kim", "Jack", "Poul", "Peter");
String[] nameArr = {"Darcy", "Chris", "Linda", "Sid", "Kim", "Jack", "Poul", "Peter"};
// 集合获取 Stream 流
Stream<String> nameListStream = nameList.stream();
// 集合获取并行 Stream 流
Stream<String> nameListStream2 = nameList.parallelStream();
// 数组获取 Stream 流
Stream<String> nameArrStream = Stream.of(nameArr);
// 数组获取 Stream 流
Stream<String> nameArrStream1 = Arrays.stream(nameArr);
// 文件流获取 Stream 流
BufferedReader bufferedReader = new BufferedReader(new FileReader("README.md"));
Stream<String> linesStream = bufferedReader.lines();
// 从静态方法获取流操作
IntStream rangeStream = IntStream.range(1, 10);
rangeStream.limit(10).forEach(num -> System.out.print(num+","));
System.out.println();
IntStream intStream = IntStream.of(1, 2, 3, 3, 4);
intStream.forEach(num -> System.out.print(num+","));
}
forEach
是 Stream
流中的一个重要方法,用于遍历 Stream
流,它支持传入一个标准的 Lambda
表达式。但是它的遍历不能通过 return/break 进行终止。同时它也是一个 terminal
操作,执行之后 Stream
流中的数据会被消费掉。
如输出对象。
List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9);
numberList.stream().forEach(number -> System.out.println(number+","));
// 输出结果
// 1,2,3,4,5,6,7,8,9,
使用 map
把对象一对一映射成另一种对象或者形式。
/**
* 把数字值乘以2
*/
@Test
public void mapTest() {
List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9);
// 映射成 2倍数字
List<Integer> collect = numberList.stream()
.map(number -> number * 2)
.collect(Collectors.toList());
collect.forEach(number -> System.out.print(number + ","));
System.out.println();
numberList.stream()
.map(number -> "数字 " + number + ",")
.forEach(number -> System.out.println(number));
}
// 输出结果
// 2,4,6,8,10,12,14,16,18,
// 数字 1,数字 2,数字 3,数字 4,数字 5,数字 6,数字 7,数字 8,数字 9,
上面的 map
可以把数据进行一对一的映射,而有些时候关系可能不止 1对 1那么简单,可能会有1对多。这时可以使用 flatMap。下面演示
使用 flatMap
把对象扁平化展开。
/**
* flatmap把对象扁平化
*/
@Test
public void flatMapTest() {
Stream<List<Integer>> inputStream = Stream.of(
Arrays.asList(1),
Arrays.asList(2, 3),
Arrays.asList(4, 5, 6)
);
List<Integer> collect = inputStream
.flatMap((childList) -> childList.stream())
.collect(Collectors.toList());
collect.forEach(number -> System.out.print(number + ","));
}
// 输出结果
// 1,2,3,4,5,6,
使用 filter
进行数据筛选,挑选出想要的元素,下面的例子演示怎么挑选出偶数数字。
/**
* filter 数据筛选
* 筛选出偶数数字
*/
@Test
public void filterTest() {
List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9);
List<Integer> collect = numberList.stream()
.filter(number -> number % 2 == 0)
.collect(Collectors.toList());
collect.forEach(number -> System.out.print(number + ","));
}
得到如下结果。
2,4,6,8,
findFirst
可以查找出 Stream
流中的第一个元素,它返回的是一个 Optional 类型,如果还不知道 Optional 类的用处,可以参考之前文章 Jdk14都要出了,还不能使用 Optional优雅的处理空指针? 。
/**
* 查找第一个数据
* 返回的是一个 Optional 对象
*/
@Test
public void findFirstTest(){
List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9);
Optional<Integer> firstNumber = numberList.stream()
.findFirst();
System.out.println(firstNumber.orElse(-1));
}
// 输出结果
// 1
findFirst
方法在查找到需要的数据之后就会返回不再遍历数据了,也因此 findFirst
方法可以对有无限数据的 Stream
流进行操作,也可以说 findFirst
是一个 short-circuiting
操作。
Stream
流可以轻松的转换为其他结构,下面是几种常见的示例。
/**
* Stream 转换为其他数据结构
*/
@Test
public void collectTest() {
List<Integer> numberList = Arrays.asList(1, 1, 2, 2, 3, 3, 4, 4, 5);
// to array
Integer[] toArray = numberList.stream()
.toArray(Integer[]::new);
// to List
List<Integer> integerList = numberList.stream()
.collect(Collectors.toList());
// to set
Set<Integer> integerSet = numberList.stream()
.collect(Collectors.toSet());
System.out.println(integerSet);
// to string
String toString = numberList.stream()
.map(number -> String.valueOf(number))
.collect(Collectors.joining()).toString();
System.out.println(toString);
// to string split by ,
String toStringbJoin = numberList.stream()
.map(number -> String.valueOf(number))
.collect(Collectors.joining(",")).toString();
System.out.println(toStringbJoin);
}
// 输出结果
// [1, 2, 3, 4, 5]
// 112233445
// 1,1,2,2,3,3,4,4,5
获取或者扔掉前 n 个元素
/**
* 获取 / 扔掉前 n 个元素
*/
@Test
public void limitOrSkipTest() {
// 生成自己的随机数流
List<Integer> ageList = Arrays.asList(11, 22, 13, 14, 25, 26);
ageList.stream()
.limit(3)
.forEach(age -> System.out.print(age+","));
System.out.println();
ageList.stream()
.skip(3)
.forEach(age -> System.out.print(age+","));
}
// 输出结果
// 11,22,13,
// 14,25,26,
数学统计功能,求一组数组的最大值、最小值、个数、数据和、平均数等。
/**
* 数学计算测试
*/
@Test
public void mathTest() {
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6);
IntSummaryStatistics stats = list.stream().mapToInt(x -> x).summaryStatistics();
System.out.println("最小值:" + stats.getMin());
System.out.println("最大值:" + stats.getMax());
System.out.println("个数:" + stats.getCount());
System.out.println("和:" + stats.getSum());
System.out.println("平均数:" + stats.getAverage());
}
// 输出结果
// 最小值:1
// 最大值:6
// 个数:6
// 和:21
// 平均数:3.5
分组聚合功能,和数据库的 Group by 的功能一致。
/**
* groupingBy
* 按年龄分组
*/
@Test
public void groupByTest() {
List<Integer> ageList = Arrays.asList(11, 22, 13, 14, 25, 26);
Map<String, List<Integer>> ageGrouyByMap = ageList.stream()
.collect(Collectors.groupingBy(age -> String.valueOf(age / 10)));
ageGrouyByMap.forEach((k, v) -> {
System.out.println("年龄" + k + "0多岁的有:" + v);
});
}
// 输出结果
// 年龄10多岁的有:[11, 13, 14]
// 年龄20多岁的有:[22, 25, 26]
/**
* partitioningBy
* 按某个条件分组
* 给一组年龄,分出成年人和未成年人
*/
public void partitioningByTest() {
List<Integer> ageList = Arrays.asList(11, 22, 13, 14, 25, 26);
Map<Boolean, List<Integer>> ageMap = ageList.stream()
.collect(Collectors.partitioningBy(age -> age > 18));
System.out.println("未成年人:" + ageMap.get(false));
System.out.println("成年人:" + ageMap.get(true));
}
// 输出结果
// 未成年人:[11, 13, 14]
// 成年人:[22, 25, 26]
/**
* 生成自己的 Stream 流
*/
@Test
public void generateTest(){
// 生成自己的随机数流
Random random = new Random();
Stream<Integer> generateRandom = Stream.generate(random::nextInt);
generateRandom.limit(5).forEach(System.out::println);
// 生成自己的 UUID 流
Stream<UUID> generate = Stream.generate(UUID::randomUUID);
generate.limit(5).forEach(System.out::println);
}
// 输出结果
// 793776932
// -2051545609
// -917435897
// 298077102
// -1626306315
// 31277974-841a-4ad0-a809-80ae105228bd
// f14918aa-2f94-4774-afcf-fba08250674c
// d86ccefe-1cd2-4eb4-bb0c-74858f2a7864
// 4905724b-1df5-48f4-9948-fa9c64c7e1c9
// 3af2a07f-0855-455f-a339-6e890e533ab3
上面的例子中 Stream
流是无限的,但是获取到的结果是有限的,使用了 Limit
限制获取的数量,所以这个操作也是 short-circuiting
操作。
正确使用并且正确格式化的 Stream
流操作代码不仅简洁优雅,更让人赏心悦目。下面对比下在使用 Stream
流和不使用 Stream
流时相同操作的编码风格。
/**
* 使用流操作和不使用流操作的编码风格对比
*/
@Test
public void diffTest() {
// 不使用流操作
List<String> names = Arrays.asList("Jack", "Jill", "Nate", "Kara", "Kim", "Jullie", "Paul", "Peter");
// 筛选出长度为4的名字
List<String> subList = new ArrayList<>();
for (String name : names) {
if (name.length() == 4) {
subList.add(name);
}
}
// 把值用逗号分隔
StringBuilder sbNames = new StringBuilder();
for (int i = 0; i < subList.size() - 1; i++) {
sbNames.append(subList.get(i));
sbNames.append(", ");
}
// 去掉最后一个逗号
if (subList.size() > 1) {
sbNames.append(subList.get(subList.size() - 1));
}
System.out.println(sbNames);
}
// 输出结果
// Jack, Jill, Nate, Kara, Paul
如果是使用 Stream
流操作。
// 使用 Stream 流操作
String nameString = names.stream()
.filter(num -> num.length() == 4)
.collect(Collectors.joining(", "));
System.out.println(nameString);
上面有提到,数据处理/转换(intermedia)
操作 map (mapToInt, flatMap 等)、 filter、 distinct、 sorted、 peek、 limit、 skip、 parallel、 sequential、 unordered 等这些操作,在调用方法时并不会立即调用,而是在真正使用的时候才会生效,这样可以让操作延迟到真正需要使用的时刻。
下面会举个例子演示这一点。
/**
* 找出偶数
*/
@Test
public void lazyTest() {
// 生成自己的随机数流
List<Integer> numberLIst = Arrays.asList(1, 2, 3, 4, 5, 6);
// 找出偶数
Stream<Integer> integerStream = numberLIst.stream()
.filter(number -> {
int temp = number % 2;
if (temp == 0 ){
System.out.println(number);
}
return temp == 0;
});
System.out.println("分割线");
List<Integer> collect = integerStream.collect(Collectors.toList());
}
如果没有 惰性计算
,那么很明显会先输出偶数,然后输出 分割线
。而实际的效果是。
分割线
2
4
6
可见 惰性计算
把计算延迟到了真正需要的时候。
获取 Stream
流时可以使用 parallelStream
方法代替 stream
方法以获取并行处理流,并行处理可以充分的发挥多核优势,而且不增加编码的复杂性。
下面的代码演示了生成一千万个随机数后,把每个随机数乘以2然后求和时,串行计算和并行计算的耗时差异。
/**
* 并行计算
*/
@Test
public void main() {
// 生成自己的随机数流,取一千万个随机数
Random random = new Random();
Stream<Integer> generateRandom = Stream.generate(random::nextInt);
List<Integer> numberList = generateRandom.limit(10000000).collect(Collectors.toList());
// 串行 - 把一千万个随机数,每个随机数 * 2 ,然后求和
long start = System.currentTimeMillis();
int sum = numberList.stream()
.map(number -> number * 2)
.mapToInt(x -> x)
.sum();
long end = System.currentTimeMillis();
System.out.println("串行耗时:"+(end - start)+"ms,和是:"+sum);
// 并行 - 把一千万个随机数,每个随机数 * 2 ,然后求和
start = System.currentTimeMillis();
sum = numberList.parallelStream()
.map(number -> number * 2)
.mapToInt(x -> x)
.sum();
end = System.currentTimeMillis();
System.out.println("并行耗时:"+(end - start)+"ms,和是:"+sum);
}
得到如下输出。
串行耗时:1005ms,和是:481385106
并行耗时:47ms,和是:481385106
效果显而易见,代码简洁优雅。
从上面的使用案例中,可以发现使用 Stream
流操作的代码非常简洁,而且可读性更高。但是如果不正确的排版,那么看起来将会很糟糕,比如下面的同样功能的代码例子,多几层操作呢,是不是有些让人头大?
// 不排版
String string = names.stream().filter(num -> num.length() == 4).map(name -> name.toUpperCase()).collect(Collectors.joining(","));
// 排版
String string = names.stream()
.filter(num -> num.length() == 4)
.map(name -> name.toUpperCase())
.collect(Collectors.joining(","));
如果想要你的 Stream
流对于每次的相同操作的结果都是相同的话,那么你必须保证 Lambda
表达式的纯度,也就是下面两点。
这两点对于保证函数的幂等非常重要,不然你程序执行结果可能会变得难以预测,就像下面的例子。
@Test
public void simpleTest(){
List<Integer> numbers = Arrays.asList(1, 2, 3);
int[] factor = new int[] { 2 };
Stream<Integer> stream = numbers.stream()
.map(e -> e * factor[0]);
factor[0] = 0;
stream.forEach(System.out::println);
}
// 输出结果
// 0
// 0
// 0
文中代码都已经
文中代码都已经上传到
https://github.com/niumoo/jdk-feature/blob/master/src/main/java/net/codingme/feature/jdk8/Jdk8Stream.java 。
本文由哈喽比特于4年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/qKowwsJNd4PUaZ1XVbTBNQ
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。