堆栈遵循LIFO(后进先出)的原则。如果你把书堆叠起来,上面的书会比下面的书先拿。或者当你在网上浏览时,后退按钮会引导你到最近浏览的页面。
Stack具有以下常见方法:
push
:输入一个新元素pop
:删除顶部元素,返回删除的元素peek
:返回顶部元素length
:返回堆栈中元素的数量Javascript中的数组具有Stack的属性,但是我们使用 function Stack()
从头开始构建Stack
function Stack() {
this.count = 0;
this.storage = {};
this.push = function (value) {
this.storage[this.count] = value;
this.count++;
}
this.pop = function () {
if (this.count === 0) {
return undefined;
}
this.count--;
var result = this.storage[this.count];
delete this.storage[this.count];
return result;
}
this.peek = function () {
return this.storage[this.count - 1];
}
this.size = function () {
return this.count;
}
}
Queue与Stack类似。唯一不同的是,Queue使用的是FIFO原则(先进先出)。换句话说,当你排队等候公交车时,队列中的第一个总是先上车。
队列具有以下方法:
enqueue
:输入队列,在最后添加一个元素dequeue
:离开队列,删除前元素并返回front
:得到第一个元素isEmpty
:确定队列是否为空size
:获取队列中元素的数量JavaScript中的数组具有Queue的某些属性,因此我们可以使用数组来构造Queue的示例:
function Queue() {
var collection = [];
this.print = function () {
console.log(collection);
}
this.enqueue = function (element) {
collection.push(element);
}
this.dequeue = function () {
return collection.shift();
}
this.front = function () {
return collection[0];
}
this.isEmpty = function () {
return collection.length === 0;
}
this.size = function () {
return collection.length;
}
}
队列还有另一个高级版本。为每个元素分配优先级,并将根据优先级对它们进行排序:
function PriorityQueue() {
...
this.enqueue = function (element) {
if (this.isEmpty()) {
collection.push(element);
} else {
var added = false;
for (var i = 0; i < collection.length; i++) {
if (element[1] < collection[i][1]) {
collection.splice(i, 0, element);
added = true;
break;
}
}
if (!added) {
collection.push(element);
}
}
}
}
测试一下:
var pQ = new PriorityQueue();
pQ.enqueue([ gannicus , 3]);
pQ.enqueue([ spartacus , 1]);
pQ.enqueue([ crixus , 2]);
pQ.enqueue([ oenomaus , 4]);
pQ.print();
返回
[
[ spartacus , 1 ],
[ crixus , 2 ],
[ gannicus , 3 ],
[ oenomaus , 4 ]
]
从字面上看,链表是一个链式数据结构,每个节点由两个信息组成:节点的数据和指向下一个节点的指针。链表和传统数组都是线性数据结构,具有序列化的存储方式。当然,它们也有差异:
比较 | Array | Linked List |
---|---|---|
内存分配 | 静态内存分配,发生在编译和序列化过程中 | 动态内存分配,发生在运行过程中,非连续的。 |
获取元素 | 从索引中读取,速度更快 | 读取队列中的所有节点,直到得到特定的元素,速度较慢 |
添加/删除元素 | 由于是顺序记忆和静态记忆,速度较慢 | 由于是动态分配,只需要少量的内存开销,速度更快 |
空间结构 | 一维或多维 | 单边/双边,或循环链表 |
单边链表通常具有以下方法:
size
:返回节点数head
:返回头部的元素add
:在尾部添加另一个节点remove
:删除某些节点indexOf
:返回节点的索引elementAt
:返回索引的节点addAt
:在特定索引处插入节点removeAt
:删除特定索引处的节点/** 链表中的节点 **/
function Node(element) {
// 节点中的数据
this.element = element;
// 指向下一个节点的指针
this.next = null;
}
function LinkedList() {
var length = 0;
var head = null;
this.size = function () {
return length;
}
this.head = function () {
return head;
}
this.add = function (element) {
var node = new Node(element);
if (head == null) {
head = node;
} else {
var currentNode = head;
while (currentNode.next) {
currentNode = currentNode.next;
}
currentNode.next = node;
}
length++;
}
this.remove = function (element) {
var currentNode = head;
var previousNode;
if (currentNode.element === element) {
head = currentNode.next;
} else {
while (currentNode.element !== element) {
previousNode = currentNode;
currentNode = currentNode.next;
}
previousNode.next = currentNode.next;
}
length--;
}
this.isEmpty = function () {
return length === 0;
}
this.indexOf = function (element) {
var currentNode = head;
var index = -1;
while (currentNode) {
index++;
if (currentNode.element === element) {
return index;
}
currentNode = currentNode.next;
}
return -1;
}
this.elementAt = function (index) {
var currentNode = head;
var count = 0;
while (count < index) {
count++;
currentNode = currentNode.next;
}
return currentNode.element;
}
this.addAt = function (index, element) {
var node = new Node(element);
var currentNode = head;
var previousNode;
var currentIndex = 0;
if (index > length) {
return false;
}
if (index === 0) {
node.next = currentNode;
head = node;
} else {
while (currentIndex < index) {
currentIndex++;
previousNode = currentNode;
currentNode = currentNode.next;
}
node.next = currentNode;
previousNode.next = node;
}
length++;
}
this.removeAt = function (index) {
var currentNode = head;
var previousNode;
var currentIndex = 0;
if (index < 0 || index >= length) {
return null;
}
if (index === 0) {
head = currentIndex.next;
} else {
while (currentIndex < index) {
currentIndex++;
previousNode = currentNode;
currentNode = currentNode.next;
}
previousNode.next = currentNode.next;
}
length--;
return currentNode.element;
}
}
集合是数学的基本概念:定义明确且不同的对象的集合。ES6引入了集合的概念,它与数组有一定程度的相似性。但是,集合不允许重复元素,也不会被索引。
一个典型的集合具有以下方法:
values
:返回集合中的所有元素size
:返回元素个数has
:确定元素是否存在add
:将元素插入集合remove
:从集合中删除元素union
:返回两组交集difference
:返回两组的差subset
:确定某个集合是否是另一个集合的子集为了区分ES6中的 set
,我们在以下示例中声明为 MySet
:
function MySet() {
var collection = [];
this.has = function (element) {
return (collection.indexOf(element) !== -1);
}
this.values = function () {
return collection;
}
this.size = function () {
return collection.length;
}
this.add = function (element) {
if (!this.has(element)) {
collection.push(element);
return true;
}
return false;
}
this.remove = function (element) {
if (this.has(element)) {
index = collection.indexOf(element);
collection.splice(index, 1);
return true;
}
return false;
}
this.union = function (otherSet) {
var unionSet = new MySet();
var firstSet = this.values();
var secondSet = otherSet.values();
firstSet.forEach(function (e) {
unionSet.add(e);
});
secondSet.forEach(function (e) {
unionSet.add(e);
});
return unionSet; }
this.intersection = function (otherSet) {
var intersectionSet = new MySet();
var firstSet = this.values();
firstSet.forEach(function (e) {
if (otherSet.has(e)) {
intersectionSet.add(e);
}
});
return intersectionSet;
}
this.difference = function (otherSet) {
var differenceSet = new MySet();
var firstSet = this.values();
firstSet.forEach(function (e) {
if (!otherSet.has(e)) {
differenceSet.add(e);
}
});
return differenceSet;
}
this.subset = function (otherSet) {
var firstSet = this.values();
return firstSet.every(function (value) {
return otherSet.has(value);
});
}
}
哈希表是一种键值数据结构。由于通过键值查询的速度快如闪电,所以常用于Map、Dictionary或Object数据结构中。如上图所示,哈希表使用哈希函数(hash function
)将键转换为数字列表,这些数字作为对应键的值。要快速使用键获取价值,时间复杂度可以达到O(1)。相同的键必须返回相同的值——这是哈希函数的基础。
哈希表具有以下方法:
add
:添加键值对remove
:删除键值对lookup
:使用键查找对应的值一个Javascript中简化的哈希表的例子:
function hash(string, max) {
var hash = 0;
for (var i = 0; i < string.length; i++) {
hash += string.charCodeAt(i);
}
return hash % max;
}
function HashTable() {
let storage = [];
const storageLimit = 4;
this.add = function (key, value) {
var index = hash(key, storageLimit);
if (storage[index] === undefined) {
storage[index] = [
[key, value]
];
} else {
var inserted = false;
for (var i = 0; i < storage[index].length; i++) {
if (storage[index][i][0] === key) {
storage[index][i][1] = value;
inserted = true;
}
}
if (inserted === false) {
storage[index].push([key, value]);
}
}
}
this.remove = function (key) {
var index = hash(key, storageLimit);
if (storage[index].length === 1 && storage[index][0][0] === key) {
delete storage[index];
} else {
for (var i = 0; i < storage[index]; i++) {
if (storage[index][i][0] === key) {
delete storage[index][i];
}
}
}
}
this.lookup = function (key) {
var index = hash(key, storageLimit);
if (storage[index] === undefined) {
return undefined;
} else {
for (var i = 0; i < storage[index].length; i++) {
if (storage[index][i][0] === key) {
return storage[index][i][1];
}
}
}
}
}
Tree(树)数据结构是多层结构。与Array,Stack和Queue相比,它也是一种非线性数据结构。这种结构在插入和搜索操作时效率很高。我们来看看树型数据结构的一些概念。
root
:树的根节点,无父节点parent node
:上层的直接节点,只有一个child node
:下层的直接节点可以有多个siblings
:共享同一个父节点leaf
:没有孩子的节点Edge
:节点之间的分支或链接path
:从起始节点到目标节点的边Height of Nod
:特定节点到叶节点的最长路径的边数Height of Tree
:根节点到叶节点的最长路径的边数Depth of Node
:从根节点到特定节点的边数Degree of Node
:子节点数这里以二叉树为例。每个节点最多有两个节点,左边节点比当前节点小,右边节点比当前节点大。
二叉树中的常用方法:
add
:将节点插入树findMin
:获取最小节点findMax
:获取最大节点find
:搜索特定节点isPresent
:确定某个节点的存在remove
:从树中删除节点JavaScript中的示例:
class Node {
constructor(data, left = null, right = null) {
this.data = data;
this.left = left;
this.right = right;
}
}
class BST {
constructor() {
this.root = null;
}
add(data) {
const node = this.root;
if (node === null) {
this.root = new Node(data);
return;
} else {
const searchTree = function (node) {
if (data < node.data) {
if (node.left === null) {
node.left = new Node(data);
return;
} else if (node.left !== null) {
return searchTree(node.left);
}
} else if (data > node.data) {
if (node.right === null) {
node.right = new Node(data);
return;
} else if (node.right !== null) {
return searchTree(node.right);
}
} else {
return null;
}
};
return searchTree(node);
}
}
findMin() {
let current = this.root;
while (current.left !== null) {
current = current.left;
}
return current.data;
}
findMax() {
let current = this.root;
while (current.right !== null) {
current = current.right;
}
return current.data;
}
find(data) {
let current = this.root;
while (current.data !== data) {
if (data < current.data) {
current = current.left
} else {
current = current.right;
}
if (current === null) {
return null;
}
}
return current;
}
isPresent(data) {
let current = this.root;
while (current) {
if (data === current.data) {
return true;
}
if (data < current.data) {
current = current.left;
} else {
current = current.right;
}
}
return false;
}
remove(data) {
const removeNode = function (node, data) {
if (node == null) {
return null;
}
if (data == node.data) {
// no child node
if (node.left == null && node.right == null) {
return null;
}
// no left node
if (node.left == null) {
return node.right;
}
// no right node
if (node.right == null) {
return node.left;
}
// has 2 child nodes
var tempNode = node.right;
while (tempNode.left !== null) {
tempNode = tempNode.left;
}
node.data = tempNode.data;
node.right = removeNode(node.right, tempNode.data);
return node;
} else if (data < node.data) {
node.left = removeNode(node.left, data);
return node;
} else {
node.right = removeNode(node.right, data);
return node;
}
}
this.root = removeNode(this.root, data);
}
}
测试一下:
const bst = new BST();
bst.add(4);
bst.add(2);
bst.add(6);
bst.add(1);
bst.add(3);
bst.add(5);
bst.add(7);
bst.remove(4);
console.log(bst.findMin());
console.log(bst.findMax());
bst.remove(7);
console.log(bst.findMax());
console.log(bst.isPresent(4));
1
7
6
false
Trie或“前缀树”也是搜索树的一种。Trie分步存储数据——树中的每个节点代表一个步骤。Trie是用来存储词汇的,所以它可以快速搜索,特别是自动完成功能。
Trie中的每个节点都有一个字母——分支之后可以组成一个完整的单词。它还包括一个布尔指示符,以显示这是否是最后一个字母。
Trie具有以下方法:
add
:在字典树中插入一个单词isWord
:确定树是否由某些单词组成print
:返回树中的所有单词/** Node in Trie **/
function Node() {
this.keys = new Map();
this.end = false;
this.setEnd = function () {
this.end = true;
};
this.isEnd = function () {
return this.end;
}
}
function Trie() {
this.root = new Node();
this.add = function (input, node = this.root) {
if (input.length === 0) {
node.setEnd();
return;
} else if (!node.keys.has(input[0])) {
node.keys.set(input[0], new Node());
return this.add(input.substr(1), node.keys.get(input[0]));
} else {
return this.add(input.substr(1), node.keys.get(input[0]));
}
}
this.isWord = function (word) {
let node = this.root;
while (word.length > 1) {
if (!node.keys.has(word[0])) {
return false;
} else {
node = node.keys.get(word[0]);
word = word.substr(1);
}
}
return (node.keys.has(word) && node.keys.get(word).isEnd()) ? true : false;
}
this.print = function () {
let words = new Array();
let search = function (node = this.root, string) {
if (node.keys.size != 0) {
for (let letter of node.keys.keys()) {
search(node.keys.get(letter), string.concat(letter));
}
if (node.isEnd()) {
words.push(string);
}
} else {
string.length > 0 ? words.push(string) : undefined;
return;
}
};
search(this.root, new String());
return words.length > 0 ? words : null;
}
}
Graph(有时称为网络)是指具有链接(或边)的节点集。根据联系是否有方向性,可以进一步分为两组(即定向图和不定向图)。Graph在我们的生活中被广泛使用——在导航应用中计算最佳路线,或者在社交媒体中推荐朋友,举两个例子。
图有两种表示形式:
邻接清单
在此方法中,我们在左侧列出所有可能的节点,并在右侧显示已连接的节点。
邻接矩阵
相邻矩阵以行和列的形式显示节点,行和列的交点诠释了节点之间的关系,0表示没有联系,1表示有联系,>1表示权重不同。
要查询图中的节点,必须用 “宽度优先搜索"(BFS)方法或 "深度优先搜索"(DFS)方法在整个树网中进行搜索。
让我们看一个例子的BFS在Javascript:
function bfs(graph, root) {
var nodesLen = {};
for (var i = 0; i < graph.length; i++) {
nodesLen[i] = Infinity;
}
nodesLen[root] = 0;
var queue = [root];
var current;
while (queue.length != 0) {
current = queue.shift();
var curConnected = graph[current];
var neighborIdx = [];
var idx = curConnected.indexOf(1);
while (idx != -1) {
neighborIdx.push(idx);
idx = curConnected.indexOf(1, idx + 1);
}
for (var j = 0; j < neighborIdx.length; j++) {
if (nodesLen[neighborIdx[j]] == Infinity) {
nodesLen[neighborIdx[j]] = nodesLen[current] + 1;
queue.push(neighborIdx[j]);
}
}
}
return nodesLen;
}
测试一下:
var graph = [
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0],
[1, 1, 0, 0, 0],
[0, 0, 0, 1, 0],
[0, 1, 0, 0, 0]
];
console.log(bfs(graph, 1));
// 结果
{
0: 2,
1: 0,
2: 1,
3: 3,
4: Infinity
}
就是这样——我们已经介绍了所有常见的数据结构,并给出了JavaScript中的例子。这应该能让你更好地了解数据结构在计算机中的工作原理。祝你编码愉快!
本文由哈喽比特于4年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/cGCXkxsMUiKJSc8A8R7fpA
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。