Elasticsearch 是一个实时的分布式搜索与分析引擎,在使用过程中,有一些典型的使用场景,比如分页、遍历等。
在使用关系型数据库中,我们被告知要注意甚至被明确禁止使用深度分页,同理,在 Elasticsearch 中,也应该尽量避免使用深度分页。
这篇文章主要介绍 Elasticsearch 中分页相关内容!
在ES中,分页查询默认返回最顶端的10条匹配hits。
如果需要分页,需要使用from和size参数。
一个基本的ES查询语句是这样的:
POST /my_index/my_type/_search
{
"query": { "match_all": {}},
"from": 100,
"size": 10
}
上面的查询表示从搜索结果中取第100条开始的10条数据。
「那么,这个查询语句在ES集群内部是怎么执行的呢?」
在ES中,搜索一般包括两个阶段,query 和 fetch 阶段,可以简单的理解,query 阶段确定要取哪些doc,fetch 阶段取出具体的 doc。
❝Query阶段
❞
如上图所示,描述了一次搜索请求的 query 阶段:·
from + size
的优先级队列用来存结果,我们管 node1 叫 coordinating node。from + size
的优先级队列里,可以把优先级队列理解为一个包含top N
结果的列表。在上面的例子中,coordinating node 拿到(from + size) * 6
条数据,然后合并并排序后选择前面的from + size
条数据存到优先级队列,以便 fetch 阶段使用。
另外,各个分片返回给 coordinating node 的数据用于选出前from + size
条数据,所以,只需要返回唯一标记 doc 的_id
以及用于排序的_score
即可,这样也可以保证返回的数据量足够小。
coordinating node 计算好自己的优先级队列后,query 阶段结束,进入 fetch 阶段。
❝Fetch阶段
❞
query 阶段知道了要取哪些数据,但是并没有取具体的数据,这就是 fetch 阶段要做的。
上图展示了 fetch 过程:
_id
取到数据详情,然后返回给 coordinating node。coordinating node 的优先级队列里有from + size
个_doc _id
,但是,在 fetch 阶段,并不需要取回所有数据,在上面的例子中,前100条数据是不需要取的,只需要取优先级队列里的第101到110条数据即可。
需要取的数据可能在不同分片,也可能在同一分片,coordinating node 使用 「multi-get」 来避免多次去同一分片取数据,从而提高性能。
「这种方式请求深度分页是有问题的:」
我们可以假设在一个有 5 个主分片的索引中搜索。当我们请求结果的第一页(结果从 1 到 10 ),每一个分片产生前 10 的结果,并且返回给 协调节点 ,协调节点对 50 个结果排序得到全部结果的前 10 个。
现在假设我们请求第 1000 页—结果从 10001 到 10010 。所有都以相同的方式工作除了每个分片不得不产生前10010个结果以外。然后协调节点对全部 50050 个结果排序最后丢弃掉这些结果中的 50040 个结果。
「对结果排序的成本随分页的深度成指数上升。」
「注意1:」
size的大小不能超过index.max_result_window
这个参数的设置,默认为10000。
如果搜索size大于10000,需要设置index.max_result_window
参数
PUT _settings
{
"index": {
"max_result_window": "10000000"
}
}
「注意2:」
_doc
将在未来的版本移除,详见:
Elasticsearch 的From/Size方式提供了分页的功能,同时,也有相应的限制。
举个例子,一个索引,有10亿数据,分10个 shards,然后,一个搜索请求,from=1000000,size=100,这时候,会带来严重的性能问题:CPU,内存,IO,网络带宽。
在 query 阶段,每个shards需要返回 1000100 条数据给 coordinating node,而 coordinating node 需要接收10 * 1000
,100 条数据,即使每条数据只有 _doc _id
和 _score
,这数据量也很大了?
「在另一方面,我们意识到,这种深度分页的请求并不合理,因为我们是很少人为的看很后面的请求的,在很多的业务场景中,都直接限制分页,比如只能看前100页。」
比如,有1千万粉丝的微信大V,要给所有粉丝群发消息,或者给某省粉丝群发,这时候就需要取得所有符合条件的粉丝,而最容易想到的就是利用 from + size 来实现,不过,这个是不现实的,这时,可以采用 Elasticsearch 提供的其他方式来实现遍历。
深度分页问题大致可以分为两类:
「下面介绍几个官方提供的深度分页方法」
❝Scroll遍历数据
❞
我们可以把scroll理解为关系型数据库里的cursor,因此,scroll并不适合用来做实时搜索,而更适合用于后台批处理任务,比如群发。
这个分页的用法,「不是为了实时查询数据」,而是为了「一次性查询大量的数据(甚至是全部的数据」)。
因为这个scroll相当于维护了一份当前索引段的快照信息,这个快照信息是你执行这个scroll查询时的快照。在这个查询后的任何新索引进来的数据,都不会在这个快照中查询到。
但是它相对于from和size,不是查询所有数据然后剔除不要的部分,而是记录一个读取的位置,保证下一次快速继续读取。
不考虑排序的时候,可以结合SearchType.SCAN
使用。
scroll可以分为初始化和遍历两部,初始化时将「所有符合搜索条件的搜索结果缓存起来(注意,这里只是缓存的doc_id,而并不是真的缓存了所有的文档数据,取数据是在fetch阶段完成的)」,可以想象成快照。
在遍历时,从这个快照里取数据,也就是说,在初始化后,对索引插入、删除、更新数据都不会影响遍历结果。
「基本使用」
POST /twitter/tweet/_search?scroll=1m
{
"size": 100,
"query": {
"match" : {
"title" : "elasticsearch"
}
}
}
初始化指明 index 和 type,然后,加上参数 scroll,表示暂存搜索结果的时间,其它就像一个普通的search请求一样。
会返回一个_scroll_id
,_scroll_id
用来下次取数据用。
「遍历」
POST /_search?scroll=1m
{
"scroll_id":"XXXXXXXXXXXXXXXXXXXXXXX I am scroll id XXXXXXXXXXXXXXX"
}
这里的scroll_id
即 上一次遍历取回的_scroll_id
或者是初始化返回的_scroll_id
,同样的,需要带 scroll 参数。
重复这一步骤,直到返回的数据为空,即遍历完成。
「注意,每次都要传参数 scroll,刷新搜索结果的缓存时间」。另外,「不需要指定 index 和 type」。
设置scroll的时候,需要使搜索结果缓存到下一次遍历完成,「同时,也不能太长,毕竟空间有限。」
「优缺点」
缺点:
「优点:」
适用于非实时处理大量数据的情况,比如要进行数据迁移或者索引变更之类的。
ES提供了scroll scan方式进一步提高遍历性能,但是scroll scan不支持排序,因此scroll scan适合不需要排序的场景
「基本使用」
Scroll Scan 的遍历与普通 Scroll 一样,初始化存在一点差别。
POST /my_index/my_type/_search?search_type=scan&scroll=1m&size=50
{
"query": { "match_all": {}}
}
需要指明参数:
search_type
:赋值为scan,表示采用 Scroll Scan 的方式遍历,同时告诉 Elasticsearch 搜索结果不需要排序。number_of_shards * size
。「Scroll Scan与Scroll的区别」
_scroll_id
,没有具体的hits结果如果你数据量很大,用Scroll遍历数据那确实是接受不了,现在Scroll接口可以并发来进行数据遍历了。
每个Scroll请求,可以分成多个Slice请求,可以理解为切片,各Slice独立并行,比用Scroll遍历要快很多倍。
POST /index/type/_search?scroll=1m
{
"query": { "match_all": {}},
"slice": {
"id": 0,
"max": 5
}
}
POST ip:port/index/type/_search?scroll=1m
{
"query": { "match_all": {}},
"slice": {
"id": 1,
"max": 5
}
}
上边的示例可以单独请求两块数据,最终五块数据合并的结果与直接scroll scan相同。
其中max是分块数,id是第几块。
❝官方文档中建议max的值不要超过shard的数量,否则可能会导致内存爆炸。
❞
Search_after
是 ES 5 新引入的一种分页查询机制,其原理几乎就是和scroll一样,因此代码也几乎是一样的。
「基本使用:」
第一步:
POST twitter/_search
{
"size": 10,
"query": {
"match" : {
"title" : "es"
}
},
"sort": [
{"date": "asc"},
{"_id": "desc"}
]
}
返回出的结果信息 :
{
"took" : 29,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 5,
"relation" : "eq"
},
"max_score" : null,
"hits" : [
{
...
},
"sort" : [
...
]
},
{
...
},
"sort" : [
124648691,
"624812"
]
}
]
}
}
上面的请求会为每一个文档返回一个包含sort排序值的数组。
这些sort排序值可以被用于search_after
参数里以便抓取下一页的数据。
比如,我们可以使用最后的一个文档的sort排序值,将它传递给search_after
参数:
GET twitter/_search
{
"size": 10,
"query": {
"match" : {
"title" : "es"
}
},
"search_after": [124648691, "624812"],
"sort": [
{"date": "asc"},
{"_id": "desc"}
]
}
若我们想接着上次读取的结果进行读取下一页数据,第二次查询在第一次查询时的语句基础上添加search_after
,并指明从哪个数据后开始读取。
「基本原理」
es维护一个实时游标,它以上一次查询的最后一条记录为游标,方便对下一页的查询,它是一个无状态的查询,因此每次查询的都是最新的数据。
由于它采用记录作为游标,因此「SearchAfter要求doc中至少有一条全局唯一变量(每个文档具有一个唯一值的字段应该用作排序规范)」
「优缺点」
「优点:」
scroll_id
,不需要维护快照,因此可以避免消耗大量的资源。「缺点:」
SEARCH_AFTER
不是自由跳转到任意页面的解决方案,而是并行滚动多个查询的解决方案。
分页方式 | 性能 | 优点 | 缺点 | 场景 |
---|---|---|---|---|
from + size | 低 | 灵活性好,实现简单 | 深度分页问题 | 数据量比较小,能容忍深度分页问题 |
scroll | 中 | 解决了深度分页问题 | 无法反应数据的实时性(快照版本)维护成本高,需要维护一个 scroll_id | 海量数据的导出需要查询海量结果集的数据 |
search_after | 高 | 性能最好不存在深度分页问题能够反映数据的实时变更 | 实现复杂,需要有一个全局唯一的字段连续分页的实现会比较复杂,因为每一次查询都需要上次查询的结果,它不适用于大幅度跳页查询 | 海量数据的分页 |
参照:https://www.elastic.co/guide/en/elasticsearch/reference/master/paginate-search-results.html#scroll-search-results
在7.*
版本中,ES官方不再推荐使用Scroll方法来进行深分页,而是推荐使用带PIT的search_after
来进行查询;
从7.*
版本开始,您可以使用SEARCH_AFTER
参数通过上一页中的一组排序值检索下一页命中。
使用SEARCH_AFTER
需要多个具有相同查询和排序值的搜索请求。
如果这些请求之间发生刷新,则结果的顺序可能会更改,从而导致页面之间的结果不一致。
为防止出现这种情况,您可以创建一个时间点(PIT)来在搜索过程中保留当前索引状态。
POST /my-index-000001/_pit?keep_alive=1m
返回一个PIT ID:
{
"id": "46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA=="
}
在搜索请求中指定PIT:
GET /_search
{
"size": 10000,
"query": {
"match" : {
"user.id" : "elkbee"
}
},
"pit": {
"id": "46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA==",
"keep_alive": "1m"
},
"sort": [
{"@timestamp": {"order": "asc", "format": "strict_date_optional_time_nanos", "numeric_type" : "date_nanos" }}
]
}
分别分页获取1 - 10
,49000 - 49010
,99000 - 99010
范围各10条数据(前提10w条),性能大致是这样:
对于向前翻页,ES中没有相应API,但是根据官方说法(https://github.com/elastic/elasticsearch/issues/29449),ES中的向前翻页问题可以通过翻转排序方式来实现即:
search_after
该页的最后一条数据id为下一页,则逆序search_after
该页的第一条数据id则为上一页。Scroll和search_after
原理基本相同,他们都采用了游标的方式来进行深分页。
这种方式虽然能够一定程度上解决深分页问题。但是,它们并不是深分页问题的终极解决方案,深分页问题「必须避免!!」。
对于Scroll,无可避免的要维护scroll_id
和历史快照,并且,还必须保证scroll_id
的存活时间,这对服务器是一个巨大的负荷。
对于Search_After
,如果允许用户大幅度跳转页面,会导致短时间内频繁的搜索动作,这样的效率非常低下,这也会增加服务器的负荷,同时,在查询过程中,索引的增删改会导致查询数据不一致或者排序变化,造成结果不准确。
Search_After
本身就是一种业务折中方案,它不允许指定跳转到页面,而只提供下一页的功能。
Scroll默认你会在后续将所有符合条件的数据都取出来,所以,它只是搜索到了所有的符合条件的doc_id
(这也是为什么官方推荐用doc_id
进行排序,因为本身缓存的就是doc_id
,如果用其他字段排序会增加查询量),并将它们排序后保存在协调节点(coordinate node),但是并没有将所有数据进行fetch,而是每次scroll,读取size个文档,并返回此次读取的最后一个文档以及上下文状态,用以告知下一次需要从哪个shard的哪个文档之后开始读取。
这也是为什么官方不推荐scroll用来给用户进行实时的分页查询,而是适合于大批量的拉取数据,因为它从设计上就不是为了实时读取数据而设计的。
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/qc3e1UiCAOdIsmCYuiCxkA
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。