在Modern C++
之前,C++无疑是个更容易写出坑的语言,无论从开发效率,和易坑性,让很多新手望而却步。比如内存泄露问题,就是经常会被写出来的坑,本文就让我们一起来看看,这些让现在或者曾经的C++
程序员泪流满面的内存泄露
场景吧。你是否有踩过?
这类问题可以称之为out of scope
的时候,并没有释放相应对象的堆上内存。有时候最简单的场景,反而是最容易犯错的。这个我想主要是因为经常写,哪有不出错。下面场景一看就知道了,当你在写XXX_Class * pObj = new XXX_Class();
这一行的时候,脑子里面还在默念记得要释放pObj ,记得要释放pObj
, 可能因为重要的事情要说三遍,而你只喊了两遍,最终还是忘记了写delete pObj;
这样去释放对象。
void MemoryLeakFunction()
{
XXX_Class * pObj = new XXX_Class();
pObj->DoSomething();
return;
}
下面这个场景,就是析构函数中并没有释放成员所指向的内存。这个我们就要注意了,一般当你构建一个类的时候,写析构函数一定要切记释放类成员关联的资源。
class MemoryLeakClass
{
public:
MemoryLeakClass()
{
m_pObj = new XXX_ResourceClass;
}
void DoSomething()
{
m_pObj->DoSomething();
}
~MemoryLeakClass()
{
;
}
private:
XXX_ResourceClass* m_pObj;
};
上述这两种代码例子,是不是让一个C++
工程师如履薄冰,完全看自己的大脑在不在状态。在boost
或者C++ 11
后,通过智能指针去进行包裹这个原始指针,这是一种RAII
的思想(可以参阅本文末尾的关联阅读), 在out of scope
的时候,释放自己所包裹的原始指针指向的资源。将上述例子用unique_ptr
改写一下。
void MemoryLeakFunction()
{
std::unique_ptr<XXX_Class> pObj = make_unique<XXX_Class>();
pObj->DoSomething();
return;
}
大家知道C++
中这样一个语句XXX_Class * pObj = new XXX_Class();
中的new
我们一般称其为C++关键字
(keyword
), 就以这个语句为例做了两个操作:
operator new
从堆上申请所需的空间XXX_Class
的构造函数那么当你调用delete pObj;
的时候,道理同new
,刚好相反:
XXX_Class
的析构函数operator delete
释放了内存一切似乎都没有什么问题,然后又一个坑来了。但如果申请的是一个数组呢,入下述例子:
class MemoryLeakClass
{
public:
MemoryLeakClass()
{
m_pStr = new char[100];
}
void DoSomething()
{
strcpy_s(m_pStr, 100, "Hello Memory Leak!");
std::cout << m_pStr << std::endl;
}
~MemoryLeakClass()
{
delete m_pStr;
}
private:
char *m_pStr;
};
void MemoryLeakFunction()
{
const int iSize = 5;
MemoryLeakClass* pArrayObjs = new MemoryLeakClass [iSize];
for (int i = 0; i < iSize; i++)
{
(pArrayObjs+i)->DoSomething();
}
delete pArrayObjs;
}
上述例子通过MemoryLeakClass* pArrayObjs = new MemoryLeakClass [iSize];
申请了一个MemoryLeakClass数组
,那么调用不匹配的delete pArrayObjs;
, 会产生内存泄露。先看看下图, 然后结合刚讲的delete
的行为:
那么其实调用delete pArrayObjs;
的时候,释放了整个pArrayObjs
的内存,但是只调用了pArrayObjs[0]
析构函数并释放中的m_pStr
指向的内存。pArrayObjs 1~4
并没有调用析构函数,从而导致其中的m_pStr
指向的内存没有释放。所以我们要注意new
和delete
要匹配使用,当使用的new []
申请的内存最好要用delete[]
。
那么留一个问题给读者, 上面代码delete m_pStr;
会导致同样的问题吗?
如果总是要让我们自己去保证,new
和delete
的配对,显然还是难以避免错误的发生的。这个时候也可以使用unique_ptr
, 修改如下:
void MemoryLeakFunction()
{
const int iSize = 5;
std::unique_ptr<MemoryLeakClass[]> pArrayObjs = std::make_unique<MemoryLeakClass[]>(iSize);
for (int i = 0; i < iSize; i++)
{
(pArrayObjs.get()+i)->DoSomething();
}
}
如果上一个章节已经有理解,那么对于这个例子,就很容易明白了。正因为C++
的灵活性,有时候会将一个对象指针转换为void *
,隐藏其类型。这种情况SDK比较常用,实际上返回的并不是SDK用的实际类型,而是一个没有类型的地址,当然有时候我们会为其亲切的取一个名字,比如叫做XXX_HANDLE
。那么继续用上述为例MemoryLeakClass
, SDK假设提供了下面三个接口:
InitObj
创建一个对象,并且返回一个PROGRAMER_HANDLE
(即void *
),对应用程序屏蔽其实际类型DoSomething
提供了一个功能去做一些事情,输入的参数,即为通过InitObj
申请的对象FreeObj
typedef void * PROGRAMER_HANDLE;
PROGRAMER_HANDLE InitObj()
{
MemoryLeakClass* pObj = new MemoryLeakClass();
return (PROGRAMER_HANDLE)pObj;
}
void DoSomething(PROGRAMER_HANDLE pHandle)
{
((MemoryLeakClass*)pHandle)->DoSomething();
}
void FreeObj(void *pObj)
{
delete pObj;
}
看到这里,也许有读者已经发现问题所在了。上述代码在调用FreeObj
的时候,delete
看到的是一个void *
, 只会释放对象所占用的内存,但是并不会调用对象的析构函数,那么对象内部的m_pStr
所指向的内存并没有被释放,从而会导致内存泄露。修改也是自然比较简单的:
void FreeObj(void *pObj)
{
delete ((MemoryLeakClass*)pObj);
}
那么一般来说,最好由相对资深的程序员去进行SDK的开发,无论从设计和实现上面,都尽量避免了各种让人泪流满满的坑。
现在大家来看看这个很容易犯错的场景, 一个很常用的多态场景。那么在调用delete pObj;
会出现内存泄露吗?
class Father
{
public:
virtual void DoSomething()
{
std::cout << "Father DoSomething()" << std::endl;
}
};
class Child : public Father
{
public:
Child()
{
std::cout << "Child()" << std::endl;
m_pStr = new char[100];
}
~Child()
{
std::cout << "~Child()" << std::endl;
delete[] m_pStr;
}
void DoSomething()
{
std::cout << "Child DoSomething()" << std::endl;
}
protected:
char* m_pStr;
};
void MemoryLeakVirualDestructor()
{
Father * pObj = new Child;
pObj->DoSomething();
delete pObj;
}
会的,因为Father
没有设置Virtual 析构函数
,那么在调用delete pObj;
的时候会直接调用Father
的析构函数,而不会调用Child
的析构函数,这就导致了Child
中的m_pStr
所指向的内存,并没有被释放,从而导致了内存泄露。并不是绝对,当有这种使用场景的时候,最好是设置基类的析构函数为虚析构函数。修改如下:
class Father
{
public:
virtual void DoSomething()
{
std::cout << "Father DoSomething()" << std::endl;
}
virtual ~Father() { ; }
};
class Child : public Father
{
public:
Child()
{
std::cout << "Child()" << std::endl;
m_pStr = new char[100];
}
virtual ~Child()
{
std::cout << "~Child()" << std::endl;
delete[] m_pStr;
}
void DoSomething()
{
std::cout << "Child DoSomething()" << std::endl;
}
protected:
char* m_pStr;
};
看下面例子,既然为了防止内存泄露,于是使用了智能指针shared_ptr
;并且这个例子就是创建了一个双向链表,为了简单演示,只有两个节点作为演示,创建了链表后,对链表进行遍历。
那么这个例子会导致内存泄露吗?
struct Node
{
Node(int iVal)
{
m_iVal = iVal;
}
~Node()
{
std::cout << "~Node(): " << "Node Value: " << m_iVal << std::endl;
}
void PrintNode()
{
std::cout << "Node Value: " << m_iVal << std::endl;
}
std::shared_ptr<Node> m_pPreNode;
std::shared_ptr<Node> m_pNextNode;
int m_iVal;
};
void MemoryLeakLoopReference()
{
std::shared_ptr<Node> pFirstNode = std::make_shared<Node>(100);
std::shared_ptr<Node> pSecondNode = std::make_shared<Node>(200);
pFirstNode->m_pNextNode = pSecondNode;
pSecondNode->m_pPreNode = pFirstNode;
//Iterate nodes
auto pNode = pFirstNode;
while (pNode)
{
pNode->PrintNode();
pNode = pNode->m_pNextNode;
}
}
先来看看下图,是链表创建完成后的示意图。有点晕乎了,怎么一个双向链表画的这么复杂,黄色背景的均为智能指针或者智能指针的组成部分。其实根据双向链表的简单性和下图的复杂性,可以想到,智能指针的引入虽然提高了安全性,但是损失的是性能。所以往往安全性和性能是需要互相权衡的。 我们继续往下看,哪里内存泄露了呢?
如果函数退出,那么m_pFirstNode
和m_pNextNode
作为栈上局部变量,智能指针本身调用自己的析构函数,给引用的对象引用计数减去1(shared_ptr
本质采用引用计数,当引用计数为0的时候,才会删除对象)。此时如下图所示,可以看到智能指针的引用计数仍然为1, 这也就导致了这两个节点的实际内存,并没有被释放掉, 从而导致内存泄露。
你可以在函数返回前手动调用pFirstNode->m_pNextNode.reset();
强制让引用计数减去1, 打破这个循环引用。
还是之前那句话,如果通过手动去控制难免会出现遗漏的情况, C++提供了weak_ptr
。
struct Node
{
Node(int iVal)
{
m_iVal = iVal;
}
~Node()
{
std::cout << "~Node(): " << "Node Value: " << m_iVal << std::endl;
}
void PrintNode()
{
std::cout << "Node Value: " << m_iVal << std::endl;
}
std::shared_ptr<Node> m_pPreNode;
std::weak_ptr<Node> m_pNextNode;
int m_iVal;
};
void MemoryLeakLoopRefference()
{
std::shared_ptr<Node> pFirstNode = std::make_shared<Node>(100);
std::shared_ptr<Node> pSecondNode = std::make_shared<Node>(200);
pFirstNode->m_pNextNode = pSecondNode;
pSecondNode->m_pPreNode = pFirstNode;
//Iterate nodes
auto pNode = pFirstNode;
while (pNode)
{
pNode->PrintNode();
pNode = pNode->m_pNextNode.lock();
}
}
看看使用了weak_ptr
之后的链表结构如下图所示,weak_ptr
只是对管理的对象做了一个弱引用,其并不会实际支配对象的释放与否,对象在引用计数
为0的时候就进行了释放,而无需关心weak_ptr
的weak计数
。注意shared_ptr
本身也会对weak计数
加1.
那么在函数退出后,当pSecondNode
调用析构函数的时候,对象的引用计数减一,引用计数
为0,释放第二个Node,在释放第二个Node的过程中又调用了m_pPreNode
的析构函数,第一个Node对象的引用计数减1,再加上pFirstNode
析构函数对第一个Node对象的引用计数也减去1,那么第一个Node对象的引用计数
也为0,第一个Node对象也进行了释放。
如果将上述代码改为双向循环链表,去除那个循环遍历Node的代码,那么最后Node的内存会被释放吗?这个问题留给读者。
如果说些作文的话,这一章节,可能有点偏题了。本章要讲的是广义上的资源泄露,比如句柄或者fd泄露。这些也算是内存泄露的一点点扩展,写作文的一点点延伸吧。
看看下述例子, 其在操作完文件后,忘记调用CloseHandle(hFile);
了,从而导致内存泄露。
void MemroyLeakFileHandle()
{
HANDLE hFile = CreateFile(LR"(C:\test\doc.txt)",
GENERIC_READ,
FILE_SHARE_READ,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL);
if (INVALID_HANDLE_VALUE == hFile)
{
std::cerr << "Open File error!" << std::endl;
return;
}
const int BUFFER_SIZE = 100;
char pDataBuffer[BUFFER_SIZE];
DWORD dwBufferSize;
if (ReadFile(hFile,
pDataBuffer,
BUFFER_SIZE,
&dwBufferSize,
NULL))
{
std::cout << dwBufferSize << std::endl;
}
}
上述你可以用RAII
机制去封装hFile
从而让其在函数退出后,直接调用CloseHandle(hFile);
。C++智能指针提供了自定义deleter
的功能,这就可以让我们使用这个deleter
的功能,改写代码如下。不过本人更倾向于使用类似于golang defer
的实现方式。
void MemroyLeakFileHandle()
{
HANDLE hFile = CreateFile(LR"(C:\test\doc.txt)",
GENERIC_READ,
FILE_SHARE_READ,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL);
std::unique_ptr< HANDLE, std::function<void(HANDLE*)>> phFile(
&hFile,
[](HANDLE* pHandle) {
if (nullptr != pHandle)
{
std::cout << "Close Handle" << std::endl;
CloseHandle(*pHandle);
}
});
if (INVALID_HANDLE_VALUE == *phFile)
{
std::cerr << "Open File error!" << std::endl;
return;
}
const int BUFFER_SIZE = 100;
char pDataBuffer[BUFFER_SIZE];
DWORD dwBufferSize;
if (ReadFile(*phFile,
pDataBuffer,
BUFFER_SIZE,
&dwBufferSize,
NULL))
{
std::cout << dwBufferSize << std::endl;
}
}
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/8h_ek1NLE9mOKdA2WiOoQw
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。