一篇文章把 Go 中的内存分配扒得干干净净

发表于 3年以前  | 总阅读数:348 次

今天给大家盘一盘 Go 中关于内存管理比较常问几个知识点。

# 1. 分配内存三大组件

Go 分配内存的过程,主要由三大组件所管理,级别从上到下分别是:

mheap

Go 在程序启动时,首先会向操作系统申请一大块内存,并交由mheap结构全局管理。

具体怎么管理呢?mheap 会将这一大块内存,切分成不同规格的小内存块,我们称之为 mspan,根据规格大小不同,mspan 大概有 70类左右,划分得可谓是非常的精细,足以满足各种对象内存的分配。

那么这些 mspan 大大小小的规格,杂乱在一起,肯定很难管理对吧?

因此就有了 mcentral 这下一级组件

mcentral

启动一个 Go 程序,会初始化很多的 mcentral ,每个 mcentral 只负责管理一种特定规格的 mspan。

相当于 mcentral 实现了在 mheap 的基础上对 mspan 的精细化管理。

但是 mcentral 在 Go 程序中是全局可见的,因此如果每次协程来 mcentral 申请内存的时候,都需要加锁。

可以预想,如果每个协程都来 mcentral 申请内存,那频繁的加锁释放锁开销是非常大的。

因此需要有一个 mcentral 的二级代理来缓冲这种压力

mcache

在一个 Go 程序里,每个线程M会绑定给一个处理器P,在单一粒度的时间里只能做多处理运行一个goroutine,每个P都会绑定一个叫 mcache 的本地缓存。

当需要进行内存分配时,当前运行的goroutine会从mcache中查找可用的mspan。从本地mcache里分配内存时不需要加锁,这种分配策略效率更高。

mspan 供应链

mcache 的 mspan 数量并不总是充足的,当供不应求的时候,mcache 会从 mcentral 再次申请更多的 mspan,同样的,如果 mcentral 的 mspan 数量也不够的话,mcentral 也会向它的上级 mheap 申请 mspan。再极端一点,如果 mheap 里的 mspan 也无法满足程序的内存申请,那该怎么办?

那就没办法啦,mheap 只能厚着脸皮跟操作系统这个老大哥申请了。

以上的供应流程,只适用于内存块小于 64KB 的场景,原因在于Go 没法使用工作线程的本地缓存mcache和全局中心缓存 mcentral 上管理超过 64KB 的内存分配,所以对于那些超过 64KB 的内存申请,会直接从堆上(mheap)上分配对应的数量的内存页(每页大小是 8KB)给程序。

# 2. 什么是堆内存和栈内存?

根据内存管理(分配和回收)方式的不同,可以将内存分为 堆内存栈内存

那么他们有什么区别呢?

堆内存:由内存分配器和垃圾收集器负责回收

栈内存:由编译器自动进行分配和释放

一个程序运行过程中,也许会有多个栈内存,但肯定只会有一个堆内存。

每个栈内存都是由线程或者协程独立占有,因此从栈中分配内存不需要加锁,并且栈内存在函数结束后会自动回收,性能相对堆内存好要高。

而堆内存呢?由于多个线程或者协程都有可能同时从堆中申请内存,因此在堆中申请内存需要加锁,避免造成冲突,并且堆内存在函数结束后,需要 GC (垃圾回收)的介入参与,如果有大量的 GC 操作,将会吏程序性能下降得历害。

# 3. 逃逸分析的必要性

由此可以看出,为了提高程序的性能,应当尽量减少内存在堆上分配,这样就能减少 GC 的压力。

在判断一个变量是在堆上分配内存还是在栈上分配内存,虽然已经有前人已经总结了一些规律,但依靠程序员能够在编码的时候时刻去注意这个问题,对程序员的要求相当之高。

好在 Go 的编译器,也开放了逃逸分析的功能,使用逃逸分析,可以直接检测出你程序员所有分配在堆上的变量(这种现象,即是逃逸)。

方法是执行如下命令

go build -gcflags '-m -l' demo.go 

# 或者再加个 -m 查看更详细信息
go build -gcflags '-m -m -l' demo.go 

# 内存分配位置的规律

如果逃逸分析工具,其实人工也可以判断到底有哪些变量是分配在堆上的。

那么这些规律是什么呢?

经过总结,主要有如下四种情况

  1. 根据变量的使用范围
  2. 根据变量类型是否确定
  3. 根据变量的占用大小
  4. 根据变量长度是否确定

接下来我们一个一个分析验证

根据变量的使用范围

当你进行编译的时候,编译器会做逃逸分析(escape analysis),当发现一个变量的使用范围仅在函数中,那么可以在栈上为它分配内存。

比如下边这个例子

func foo() int {
    v := 1024
    return v
}

func main() {
    m := foo()
    fmt.Println(m)
}

我们可以通过 go build -gcflags '-m -l' demo.go 来查看逃逸分析的结果,其中 -m 是打印逃逸分析的信息,-l 则是禁止内联优化。

从分析的结果我们并没有看到任何关于 v 变量的逃逸说明,说明其并没有逃逸,它是分配在栈上的。

$ go build -gcflags '-m -l' demo.go 
# command-line-arguments
./demo.go:12:13: ... argument does not escape
./demo.go:12:13: m escapes to heap

而如果该变量还需要在函数范围之外使用,如果还在栈上分配,那么当函数返回的时候,该变量指向的内存空间就会被回收,程序势必会报错,因此对于这种变量只能在堆上分配。

比如下边这个例子,返回的是指针

func foo() *int {
    v := 1024
    return &v
}

func main() {
    m := foo()
    fmt.Println(*m) // 1024
}

从逃逸分析的结果中可以看到 moved to heap: v ,v 变量是从堆上分配的内存,和上面的场景有着明显的区别。

$ go build -gcflags '-m -l' demo.go 
# command-line-arguments
./demo.go:6:2: moved to heap: v
./demo.go:12:13: ... argument does not escape
./demo.go:12:14: *m escapes to heap

除了返回指针之外,还有其他的几种情况也可归为一类:

第一种情况:返回任意引用型的变量:Slice 和 Map

func foo() []int {
    a := []int{1,2,3}
    return a
}

func main() {
    b := foo()
    fmt.Println(b)
}

逃逸分析结果

$ go build -gcflags '-m -l' demo.go 
# command-line-arguments
./demo.go:6:12: []int literal escapes to heap
./demo.go:12:13: ... argument does not escape
./demo.go:12:13: b escapes to heap

第二种情况:在闭包函数中使用外部变量

func Increase() func() int {
    n := 0
    return func() int {
        n++
        return n
    }
}

func main() {
    in := Increase()
    fmt.Println(in()) // 1
    fmt.Println(in()) // 2
}

逃逸分析结果

$ go build -gcflags '-m -l' demo.go 
# command-line-arguments
./demo.go:6:2: moved to heap: n
./demo.go:7:9: func literal escapes to heap
./demo.go:15:13: ... argument does not escape
./demo.go:15:16: in() escapes to heap

根据变量类型是否确定

在上边例子中,也许你发现了,所有编译输出的最后一行中都是 m escapes to heap

奇怪了,为什么 m 会逃逸到堆上?

其实就是因为我们调用了 fmt.Println() 函数,它的定义如下

func Println(a ...interface{}) (n int, err error) {
    return Fprintln(os.Stdout, a...)
}

可见其接收的参数类型是 interface{} ,对于这种编译期不能确定其参数的具体类型,编译器会将其分配于堆上。

根据变量的占用大小

最开始的时候,就介绍到,以 64KB 为分界线,我们将内存块分为 小内存块 和 大内存块。

小内存块走常规的 mspan 供应链申请,而大内存块则需要直接向 mheap,在堆区申请。

以下的例子来说明

func foo() {
    nums1 := make([]int, 8191) // < 64KB
    for i := 0; i < 8191; i++ {
        nums1[i] = i
    }
}

func bar() {
    nums2 := make([]int, 8192) // = 64KB
    for i := 0; i < 8192; i++ {
        nums2[i] = i
    }
}

-gcflags 多加个 -m 可以看到更详细的逃逸分析的结果

$ go build -gcflags '-m -l' demo.go 
# command-line-arguments
./demo.go:5:15: make([]int, 8191) does not escape
./demo.go:12:15: make([]int, 8192) escapes to heap

那为什么是 64 KB 呢?

我只能说是试出来的 (8191刚好不逃逸,8192刚好逃逸),网上有很多文章千篇一律的说和 ulimit -a 中的 stack size 有关,但经过了解这个值表示的是系统栈的最大限制是 8192 KB,刚好是 8M。

$ ulimit -a
-t: cpu time (seconds)              unlimited
-f: file size (blocks)              unlimited
-d: data seg size (kbytes)          unlimited
-s: stack size (kbytes)             8192

我个人实在无法理解这个 8192 (8M) 和 64 KB 是如何对应上的,如果有朋友知道,还请指教一下。

根据变量长度是否确定

由于逃逸分析是在编译期就运行的,而不是在运行时运行的。因此避免有一些不定长的变量可能会很大,而在栈上分配内存失败,Go 会选择把这些变量统一在堆上申请内存,这是一种可以理解的保险的做法。

func foo() {
    length := 10
    arr := make([]int, 0 ,length)  // 由于容量是变量,因此不确定,因此在堆上申请
}

func bar() {
    arr := make([]int, 0 ,10)  // 由于容量是常量,因此是确定的,因此在栈上申请
}

# 参考文章

https://xie.infoq.cn/article/ee1d2416d884b229dfe57bbcc

本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/8_aeGLEsTItXF3RSpj4T2g

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237279次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8114次阅读
 目录