关于ARM的一些基本概念,大家可以参考我之前的文章:
《到底什么是Cortex、ARMv8、arm架构、ARM指令集、soc?一文帮你梳理基础概念【科普】》
关于ARM指令用到的IDE开发环境可以参考下面这篇文章
《1. 从0开始学ARM-安装Keil MDK uVision集成开发环境》
《2. 从0开始学ARM-CPU原理,基于ARM的SOC讲解》
有了计算机硬件架构的原理,下面我就可以学习ARM模式、寄存器、流水线等基础知识。
ARM的成功,一方面得益于它独特的公司运作模式,另一方面,当然来自于ARM处理器自身的优良性能。作为一种先进的RISC处理器,ARM处理器有如下特点。
ARM采用的是32位架构,ARM的基本数据类型有以下3种。
注意:
Cortex系列之前的ARM处理器工作模式一共有7种。
Cortex系列的ARM处理器工作模式有8种,多了1个monitor模式,如下图所示:
ARM处理器工作模式
ARM之所以设计出这么多种模式出来,就是为了「应对CPU在运行时各种突发事件」,比如要支持正常的应用程序的运行,在运行任何一个时间点又可能发生很多异常事件,比如:关机、收到网卡信息、除数为0、访问非法内存、解析到了非法指令等等,不光要能处理这些异常还要能够从异常中再返回到原来的程序继续执行。
除用户模式以外,其余的所有6种模式称之为非用户模式,或特权模式(Privileged Modes);其中除去用户模式和系统模式以外的5种又称为异常模式(ExceptionModes),常用于处理中断或异常,以及需要访问受保护的系统资源等情况。
ARM微处理器的运行模式可以通过软件改变,也可以通过外部中断或异常处理改变。应用程序运行在用户模式下,当处理器运行在用户模式下时,某些被保护的系统资源是不能被访问的。
指由处理器执行指令导致原来运行程序的中止,异常与指令运行相关,是CPU执行程序产生的,是同步的,可分为精确异常和非精确异常。异常处理遵守严格的程序顺序,不能嵌套,只有当第一个异常处理完并返回后才能处理后续的异常。
要进入异常模式,一定要有异常源,ARM规定有7种异常源:
异常源 | 描述 |
---|---|
Reset | 上电时执行 |
Undef | 当流水线中的某个非法指令到达执行状态时执行 |
SWI | 当一个软中断指令被执行完的时候执行 |
Prefetch | 当一个指令被从内存中预取时,由于某种原因而失败,如果它能到达执行状态这个异常才会产生 |
Data | 如果一个预取指令试图存取一个非法的内存单元,这时异常产生 |
IRQ | 通常的中断 |
FIQ | 快速中断 |
异常发生之后,CPU必须要立刻做出响应,关于异常后面会详细讲解。
Cortex A系列ARM处理器共有40个32位寄存器,其中33个为通用寄存器,7个为状态寄存器。usr模式和sys模式共用同一组寄存器。
通用寄存器包括R0~R15,可以分为3类:
在所有运行模式下,未分组寄存器都指向同一个物理寄存器,它们未被系统用作特殊的用途.因此在中断或异常处理进行运行模式转换时,由于不同的处理器运行模式均使用相同的物理寄存器,所以可能造成寄存器中数据的破坏。
对于分组寄存器,它们每一次所访问的物理寄存器都与当前处理器的运行模式有关。
对于R8~R12来说,每个寄存器对应2个不同的物理寄存器,当使用FIQ(快速中断模式)时,访问寄存器 R8_fiq~R12_fiq;当使用除FIQ模式以外的其他模式时,访问寄存器R8_usr~R12_usr。
对于R13,R14来说,每个寄存器对应7个不同的物理寄存器,其中一个是用户模式与系统模式共用,另外6个物理寄存器对应其他6种不同的运行模式,并采用以下记号来区分不同的物理寄存器:
R13_mode R14_mode
其中mode可为:「usr,fiq,irq,svc,abt,und,mon」。
在ARM指令中常用作「堆栈指针」,用户也可使用其他的寄存器作为堆栈指针,而在Thumb指令集中,某些指令强制性的要求使用R13作为堆栈指针。
寄存器R13在ARM指令中常用作堆栈指针,但这只是一种习惯用法,用户也可使用其他的寄存器作为堆栈指针。而在Thumb指令集中,某些指令强制性的要求使用R13作为堆栈指针。
由于处理器的每种运行模式均有自己独立的物理寄存器R13,在用户应用程序的初始化部分,一般都要初始化每种模式下的R13,使其指向该运行模式的栈空间。这样,当程序的运行进入异常模式时,可以将需要保护的寄存器放入R13所指向的堆栈,而当程序从异常模式返回时,则从对应的堆栈中恢复,采用这种方式可以保证异常发生后程序的正常执行。
当执行子程序调用指令(BL)时,R14可得到R15(程序计数器PC)的备份。
在每一种运行模式下,都可用R14保存子程序的返回地址,当用BL或BLX指令调用子程序时,将PC的当前值复制给R14,执行完子程序后,又将R14的值复制回PC,即可完成子程序的调用返回。以上的描述可用指令完成。
「方法1:」
MOV PC, LR
或者
BX LR
「方法2:」在子程序入口处使用以下指令将R14存入堆栈:
STMFD SP!,{,LR}
对应的,使用以下指令可以完成子程序返回:
LDMFD SP!,{,PC}
寄存器R15用作程序计数器(PC),在ARM状态下,位[1:0]为0,位[31:2]用于保存PC,在Thumb状态下,位[0]为0,位[31:1]用于保存PC。
比如如果pc的值是0x40008001,那么在寻址的时候其实会查找地址0x40008000,低2位会自动忽略掉。「个中原因,请读者自己思考?」
由于ARM体系结构采用了多级流水线技术,对于ARM指令集而言,PC总是指向当前指令的下两条指令的地址,即PC的值为当前指令的地址值加8个字节。
即:PC值=当前程序执行位置+8
【流水线技术参考第七章】
「CPSR」(Current Program Status Register,当前程序状态寄存器),CPSR可在任何运行模式下被访问,它包括条件标志位、中断禁止位、当前处理器模式标志位,以及其他一些相关的控制和状态位。
每一种运行模式下又都有一个专用的物理状态寄存器,称为「SPSR」(Saved Program Status Register,备份的程序状态寄存器),当异常发生时,SPSR用于保存CPSR的当前值,从异常退出时则可由SPSR来恢复CPSR。
由于用户模式和系统模式不属于异常模式,它们没有SPSR,当在这两种模式下访问SPSR,结果是未知的。
寄存器CPSR格式如下:
1 . 条件码标志(condition code flags)「N,Z,C,V」均为条件码标志位,它们的内容可被算术或逻辑运算的结果所改变,并且可以决定某条指令是否被执行。在ARM状态下,绝大多数的指令都是有条件执行的,在Thumb状态下,仅有分支指令是有条件执行的。
「N (Number)」: 当用两个补码表示的带符号数进行运算时,N=1表示运行结果为负,N=0表示运行结果为正或零
「Z :(Zero)」: Z=1表示运算结果为零,Z=0表示运行结果非零
「C」 : 可以有4种方法设置C的值:
「V」 : (oVerflow)对于加/减法运算指令,当操作数和运算结果为二进制的补码表示的带符号位溢出时,V=1表示符号位溢出;对于其他的非加/减运算指令V的值通常不改变
「Q」:在ARM V5及以上版本的E系列处理器中,用Q标志位指示增强的DSP运算指令是否发生了溢出。在其它版本的处理器中,Q标志位无定义
「J:」 仅ARM v5TE-J架构支持 , T=0;J = 1 处理器处于Jazelle状态,也可以和其他位组合.
「E位:」大小端控制位
「A位:」A=1 禁止不精确的数据异常
「T :」T = 0;J=0; 处理器处于 ARM 状态 T = 1;J=0 处理器处于 Thumb 状态 T = 1;J=1 处理器处于 ThumbEE 状态
2 . 控制位 CPSR的低8位(包括I,F,T和M[4:0])称为控制位,当发生异常时这些位可以被改变,如果处理器运行特权模式,这些位也可以由程序修改。
「中断禁止位I,F」【重要】 I=1 禁止IRQ中断 F=1 禁止FIQ中断
比如我们要想在程序中实现禁止中断,那么就需要将CPSR[7]置1。
3 . 运行模式位[4-0]
bite | 模式 | ARM模式可访问的寄存器 |
---|---|---|
0b10000 | 用户模式user | PC,CPSR,R0~R14 |
0b10001 | FIQ模式 | PC,CPSR,SPSR_fiq,R14_fiq~R8_fiq,R0~R7 |
0b10010 | IRQ模式 | PC,CPSR,SPSR_irq,R14_irq~R13_irq,R0~R12 |
0b10011 | 管理模式 | PC,CPSR,SPSR_svc,R14_svc~R13_svc,R0~R12 |
0b10111 | 中止模式Abort | PC,CPSR,SPSR_abt,R14_abt~R13_abt,R0~R12 |
0b11011 | 未定义模式 | C,CPSR,SPSR_und,R14_und~R13_und,R0~R12 |
0b11111 | 系统模式 | PC,CPSR,R0~R14 |
注意观察这5个bit的特点,最高位都是1,低4位的值则各不相同,这个很重要,要想搞清楚uboot、linux的源码,尤其是异常操作的代码,必须要知道这几个bit的值。
ARM体系结构允许通过增加协处理器来扩展指令集。最常用的协处理器是用于控制片上功能的系统协处理器。
例如,控制Cache和存储管理单元MMU的CP15协处理器、设置异常向量表地址的mcr指令。
ARM支持16个协处理器,在程序执行过程中,每个协处理器忽略属于ARM处理器和其他协处理器指令,当一个协处理器硬件不能执行属于她的协处理器指令时,就会产生一个未定义的异常中断,在异常中断处理程序中,可以通过软件模拟该硬件的操作,比如,如果系统不包含向量浮点运算器,则可以选择浮点运算软件模拟包来支持向量浮点运算。
ARM协处理器指令包括如下三类:
这些指令包括如下5条:
关于协处理器指令,我们只需要知道几个常用的即可,后面文章会提到。
Jazelle杰则来 或者说Java字节码状态是为了运行Java虚拟机而添加的一种状态。
ARM的Jazelle技术在硬件上提供了对Java字节码的支持,大大提高了系统的性能。
由于ARM 架构是32-bits,16-bits = “halfword” , “word” = 32-bits。
Java 字节码 8-bits 独立架构的指令集。Jazelle 用硬件执行大多数的字节码(另一些使用高度优化了的ARM 代码)。这是由于折衷了硬件复杂度(功耗 & 硅片面积)和速度。
流水线技术通过多个功能部件并行工作来缩短程序执行时间,提高处理器核的效率和吞吐率,从而成为微处理器设计中最为重要的技术之一。
到ARM7为止的ARM处理器使用简单的3级流水线,它包括下列流水线级。(1)取指令 从寄存器装载一条指令。(2)译码(decode) 识别被执行的指令,并为下一个周期准备数据通路的控制信号。在这一级,指令占有译码逻辑,不占用数据通路。(3)执行 处理指令并将结果写回寄存器。
当处理器执行简单的数据处理指令时,流水线使得平均每个时钟周期能完成1条指令。但一条指令需要3个时钟周期来完成,因此有3个时钟周期的延时,但吞吐率是每个周期一条指令。
对于3级流水线,PC寄存器里的值并不是正在执行的指令的地址,而是预取指令的地址,这个知识点很重要,后面我们会详细的举例来证明。
处理器要满足高性能的要求,为了满足这个要求,需要重新考虑处理器的组织结构。提高性能的方法主要有两种方法:
较高性能的ARM核使用了5级流水线,而且具有分开的指令和数据存储器。在Cortex-A8中有一条13级的流水线,但是ARM公司没有对其中的技术公开任何相关的细节。
从经典ARM系列到现在Cortex系列,ARM处理器的结构在向复杂的阶段发展,但没改变的是CPU的取址指令和地址关系,「不管是几级流水线,都可以按照最初的3级流水线的操作特性来判断其当前的PC位置」。
为方便理解,下面我们以3级流水线为例,
最佳流水线
这是一个理想的实例,所有的指令都在寄存器中执行,且处理器完全不必离开芯片本身。每个周期,都有一条指令被执行,流水线的容量得到了充分的发挥。指令周期数 (CPI) = 1
LDR流水线
该例中,用6周期执行了4条指令 指令周期数 (CPI) = 1.5
与最佳流水线不同,装载(LDR) 操作将数据移进片内导致了指令/数据总线被占用,因此随后紧跟了内部的写周期( writeback)以完成将数据写回寄存器。
BL指令用于实现指令流的跳转,并存储返回地址到寄存器R14(LR)中。
分支流水线
中断流水线
「IRQ 中断的反应时间最小=7周期」
SUBS pc,lr,#4
这将恢复工作模式并从响应中断前的下一条指令处取指,如果有多个中断,需堆栈保存返回地址。注意最大的FIQ响应延迟为 29个周期(而非Thumb状态的28周期!)。
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/TOoycsLAnb28QygrL5zvTw
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。