之前在写 FastThreadLocal 的时候,挖了个坑。
咳咳,时间过得有点久了,但是影响不大今天就来补上。
来谈谈什么是伪共享,并且为什么 Netty 要在这里移除这个优化?
话不多说,发车!
这个名词听着有点高级的感觉,实际上很好理解。
我们都知道 CPU 的执行速度远大于从内存获取数据的速度,为了减少这个差距科研人员们就不断的研究,产出了高速缓存,但这个高速缓存由于工艺集成度问题,无法作为主存的介质,所以常见的 CPU 缓存结构如下图所示:
L1、L2、L3则为 CPU 和主存之间的高速缓冲区,距离 CPU 越近的缓存访问速度越快,且容量越小。
比如我笔记本的 CPU上:
访问速度:L1>L2>L3>主存。
L1 和 L2 是单核 CPU 独享的,当 CPU 访问数据的时候会先去 L1 上面找,找不到再去 L2,然后是 L3,最后是主存。所以当对一个数据重复计算的时候,应该尽量保证数据在 L1 中,这样效率才高。
从上面的结构来看,有经验的同学肯定会发现上面的结构有共享内存多线程的问题。这里就引入了一致性协议 MESI。具体协议内容这里不作展开,这里简单举例理解下:
当 cpu1 和 cpu3 共同访问主存里面的一个数据时,会分别获取放置到自己高速缓冲区中,当 cpu1 修改了这个数据之后,cpu3 的高速缓冲区中这个数据就失效了,它会让 cpu1 把这个改动刷新到主存中,然后自己再去主存加载这个数据,这样数据才会正确。
图中按序号顺序来阅读,应该不难理解。
然后重点来了,CPU 缓存的单位是缓存行,也就是说 CPU 从主存拿数据不是一个一个拿,是一行一行的拿,这一行的大小一般是 64 字节,那问题就来了。
比如,现在有个 long 数组,大小为 8 ,那刚好这个数组满足一行的大小。现在 cpu1 频繁更新long[0]的值,而 cpu3 频繁更新 long[5] 的值,这就有点麻了。
由于缓存行的机制,每次 cpu1 会把整个数组都加载到缓存中,每次仅修改 long[0] 也会使得这一行都变脏,此时 cpu3 访问的 long[5] 就失效了,因此 cpu3 需要让 cpu1 把修改刷新到主存中,然后它从主存重新获取 long[5] 再进行操作,假设此时 cpu1 又修改了 long[0],则上面的操作就又得来一遍!
明明修改的是不同的变量,但是却相互影响了,这种情况,就称之为,伪共享!
解决的方案非常简单粗暴,填充。
把可能会冲突的数据在内存上隔开来,用什么隔?用无用的数据隔开。
在关键数据前后(上图仅填充了后)填充无用的数据,让一个缓存行中,仅会存在一个有效的数据,其它都是无效的数据,就避免了一个缓存行里面出现多个有效的数据。这样一来不同的 CPU 核心修改不同的数据就不会造成其它数据缓存失效,避免了伪共享的问题。
所以 Netty 里 InternalThreadLocalMap 中奇怪的代码就是起这个作用的。
但恕我直言,可能是我等级太低,我没看出来这玩意到底是为了哪个变量而填充的。
果然,最新的版本有个大佬把它标注为废弃
我从 github 上看了看,大佬将其废弃的理由如下:
简单直白的翻译下:
简单来讲就是没发现这填充有啥好用,所以废弃了,将来版本要咔嚓了它。
所以拿 Netty 来展示伪共享的例子不行(我只是把之前写 FastThreadLocal 的坑填了)。
现在填完了,我们换个好的例子。
我写了个例子,咱们来看看填充和不填充的真实差距。
我用两个线程分别循环五千万次修改一个对象里面的两个变量 a 和 b,这两个变量大概率会在同一个缓存行中,这样就制造了伪共享的现场。
在未填充的情况下,耗费的毫秒数是1400.
然后我们再用变量p1-p7
填充一下,隔开 a 和 b。
可以看到,结果变成了380毫秒,这么一看,确实生效了!说明填充确实有效!
其实 Java 提供了一个注解 @Contended
,可以标记到指定的字段上,减少伪共享的发生,你可以认为这个注解会让 JVM 自动帮我们填充,而不需要我们手写填充的变量。不过要注意一点,这个注解需要启动时添加-XX:-RestrictContended
参数,才会生效。
我们跑一下看下结果:
果然,也提高了效率!
这个注解其实在别的地方也有应用,比如 ConcurrentHashMap
里的 CounterCell
还有 Striped64
里的 Cell
不过要注意,没有-XX:-RestrictContended
不会生效的!
至此,想必你已经明白了什么是伪共享,并且可以利用填充来避免伪共享的问题。
但填充就代表着空间的浪费,也不是什么情况下都需要填充。
只有在频繁更新相邻字段的情况下,才可能需要考虑伪共享的情况,别的情况不需要下操心。
好了,今天就到这了。
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/x1jDDD967bvMWR2jYshBKw
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。