你是怎么理解算法的呢?
简单说就是,同一个功能
所以
运行时间
和占用空间
,就是我们后面要说到的时间复杂度和空间复杂度,也是学好算法的重要基石
可能有人会问:别人是怎么做到的?代码没开发完 运行起来之前怎么知道占多少内存和运行时间呢?
确切的占内用存或运行时间确实算不出来,而且同一段代码在不同性能的机器上执行的时间也不一样,可是代码的基本执行次数,我们是可以算得出来的,这就要说到时间复杂度了
看个栗子
function foo1(){
console.log("我吃了一颗糖")
console.log("我又吃了一颗糖")
return "再吃一颗糖"
}
调用这个函数,里面总执行次数就是3次,这个没毛病,都不用算
那么下面这个栗子呢
function foo2(n){
for( let i = 0; i < n; i++){
console.log("我吃了一颗糖")
}
return "一颗糖"
}
那这个函数里面总执行次数呢?根据我们传进去的值不一样,执行次数也就不一样,但是大概次数我们总能知道
let = 0 :执行 1 次
i < n : 执行 n+1 次
i++ : 执行 n+1 次
console.log("执行了") : 执行 n 次
return 1 : 执行 1 次
这个函数的总执行次数就是 3n + 4 次,对吧
可是我们开发不可能都这样去数,所以根据代码执行时间的推导过程就有一个规律,也就是所有代码执行时间 T(n)和代码的执行次数 f(n) ,这个是成正比的,而这个规律有一个公式
T(n) = O( f(n) )
n 是输入数据的大小或者输入数据的数量
T(n) 表示一段代码的总执行时间
f(n) 表示一段代码的总执行次数
O 表示代码的执行时间 T(n) 和 执行次数f(n) 成正比
完整的公式看着就很麻烦,别着急,这个公式只要了解一下就可以了,为的就是让你知道我们表示算法复杂度的 O()
是怎么来的,我们平时表示算法复杂度主要就是用 O()
,读作大欧表示法,是字母O不是零
只用一个 O()
表示,这样看起来立马就容易理解多了
回到刚才的两个例子,就是上面的两个函数
这样有没有觉得还是很麻烦,因为如果函数逻辑一样的,只是执行次数差个几次,像O(3) 和 O(4),有什么差别?还要写成两种就有点多此一举了,所以复杂度里有统一的简化的表示法,这个执行时间简化的估算值就是我们最终的时间复杂度
简化的过程如下
O(1)
,不是说只执行了1次,而是对常量级时间复杂度的一种表示法。一般情况下,只要算法里没有循环和递归,就算有上万行代码,时间复杂度也是O(1)O(n)
O( 666n³ + 666n² + n )
,这个复杂度里面的最高次项是n的3次方。因为随着n的增大,后面的项的增长远远不及n的最高次项大,所以低于这个次项的直接忽略不计,常数也忽略不计,简化后的时间复杂度为 O(n³)
这里如果没有理解的话,暂停理解一下
接下来结合栗子,看一下常见的时间复杂度
上面说了,一般情况下,只要算法里没有循环和递归,就算有上万行代码,时间复杂度也是 O(1)
,因为它的执行次数不会随着任何一个变量的增大而变长,比如下面这样
function foo(){
let n = 1
let b = n * 100
if(b === 100){
console.log("开始吃糖")
}
console.log("我吃了1颗糖")
console.log("我吃了2颗糖")
......
console.log("我吃了10000颗糖")
}
上面也介绍了 O(n),总的来说 只有一层循环或者递归等,时间复杂度就是 O(n)
,比如下面这样
function foo1(n){
for( let i = 0; i < n; i++){
console.log("我吃了一颗糖")
}
}
function foo2(n){
while( --n > 0){
console.log("我吃了一颗糖")
}
}
function foo3(n){
console.log("我吃了一颗糖")
--n > 0 && foo3(n)
}
比如嵌套循环,如下面这样的,里层循环执行 n 次,外层循环也执行 n 次,总执行次数就是 n x n,时间复杂度就是 n 的平方,也就是 O(n²)
。假设 n 是 10,那么里面的就会打印 10 x 10 = 100 次
function foo1(n){
for( let i = 0; i < n; i++){
for( let j = 0; j < n; j++){
console.log("我吃了一颗糖")
}
}
}
还有这样的,总执行次数为 n + n²,上面说了,如果是多项式,取最高次项,所以这个时间复杂度也是 O(n²)
function foo2(n){
for( let k = 0; k < n; k++){
console.log("我吃了一颗糖")
}
for( let i = 0; i < n; i++){
for( let j = 0; j < n; j++){
console.log("我吃了一颗糖")
}
}
}
//或者下面这样,以运行时间最长的,作为时间复杂度的依据,所以下面的时间复杂度就是 O(n²)
function foo3(n){
if( n > 100){
for( let k = 0; k < n; k++){
console.log("我吃了一颗糖")
}
}else{
for( let i = 0; i < n; i++){
for( let j = 0; j < n; j++){
console.log("我吃了一颗糖")
}
}
}
}
举个栗子,这里有一包糖
这包糖里有16颗,沐华每天吃这一包糖的一半,请问多少天吃完?
意思就是16不断除以2,除几次之后等于1?用代码表示
function foo1(n){
let day = 0
while(n > 1){
n = n/2
day++
}
return day
}
console.log( foo1(16) ) // 4
循环次数的影响主要来源于 n/2 ,这个时间复杂度就是 O(logn)
,这个复杂度是怎么来的呢,别着急,继续看
再比如下面这样
function foo2(n){
for(let i = 0; i < n; i *= 2){
console.log("一天")
}
}
foo2( 16 )
里面的打印执行了 4 次,循环次数主要影响来源于 i *= 2 ,这个时间复杂度也是 O(logn)
这个 O(logn) 是怎么来的,这里补充一个小学三年级数学的知识点,对数,我们看一张图
没有理解的话再看一下,理解一下规律
真数
:就是真数,这道题里就是16底数
:就是值变化的规律,比如每次循环都是i*=2,这个乘以2就是规律。比如1,2,3,4,5...这样的值的话,底就是1,每个数变化的规律是+1嘛对数
:在这道题里可以理解成x2乘了多少次,这个次数仔细观察规律就会发现这道题里底数是 2,而我们要求的天数就是这个对数4,在对数里有一个表达公式
ab = n 读作以a为底,b的对数=n,在这道题里我们知道a和n的值,也就是 2b = 16 然后求 b
把这个公式转换一下的写法如下
logan = b 在这道题里就是 log216 = ? 答案就是 4
公式是固定的,这个16不是固定的,是我们传进去的 n,所以可以理解为这道题就是求 log2n = ?
用时间复杂度表示就是 O(log2n),由于时间复杂度需要去掉常数和系数,而log的底数跟系数是一样的,所以也需要去掉,所以最后这个正确的时间复杂度就是 O(logn)
emmmmm.....
没有理解的话,可以暂停理解一下
其他还有一些时间复杂度,我由快到慢排列了一下,如下表顺序
复杂度 | 名称 |
---|---|
O(1) | 常数复杂度 |
O(logn) | 对数复杂度 |
O(n) | 线性时间复杂度 |
O(nlogn) | 线性对数复杂度 |
O(n²) | 平方 |
O(n³) | 立方 |
O(2n) | 指数,一点数据量就卡的不行 |
O(n!) | 阶乘,就更慢了 |
这些时间复杂度有什么区别呢,看张图
随着数据量或者 n 的增大,时间复杂度也随之增加,也就是执行时间的增加,会越来越慢,越来越卡
总的来说时间复杂度就是执行时间增长的趋势,那么空间复杂度就是存储空间增长的趋势
空间复杂度就是算法需要多少内存,占用了多少空间
常用的空间复杂度有 O(1)
、O(n)
、O(n²)
只要不会因为算法里的执行,导致额外的空间增长,就算是一万行,空间复杂度也是 O(1)
,比如下面这样,时间复杂度也是 O(1)
function foo(){
let n = 1
let b = n * 100
if(b === 100){
console.log("开始吃糖")
}
console.log("我吃了1颗糖")
console.log("我吃了2颗糖")
......
console.log("我吃了10000颗糖")
}
比如下面这样,n 的数值越大,算法需要分配的空间就需要越多,来存储数组里的值,所以它的空间复杂度就是 O(n)
,时间复杂度也是 O(n)
function foo(n){
let arr = []
for( let i = 1; i < n; i++ ) {
arr[i] = i
}
}
O(n²) 这种空间复杂度一般出现在比如二维数组,或是矩阵的情况下
不用说,你肯定明白是啥情况啦
就是遍历生成类似这样格式的
let arr = [
[1,2,3,4,5],
[1,2,3,4,5],
[1,2,3,4,5]
]
希望本文对你有一点点帮助,另外,求个赞,谢谢!^_^
想要学好算法,就必须要理解复杂度这个重要基石
复杂度分析不难,关键还是在于多练。每次看到代码的时候,简单的一眼就能看出复杂度,难的稍微分析一下也能得出答案。推荐去 leetCode 刷题哦,App或者PC端都可以
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/TwZwZ-UrxDYNixU7ZzIeAw
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。