实现了 CRI 接口的容器运行时通常称为 CRI shim, 这是一个 gRPC Server,监听在本地的 unix socket 上;而 kubelet 作为 gRPC 的客户端来调用 CRI 接口,来进行 Pod 和容器、镜像的生命周期管理。另外,容器运行时需要自己负责管理容器的网络,推荐使用 CNI。
kubelet 调用下层容器运行时的执行过程,并不会直接调用Docker 的 API,而是通过一组叫作 CRI(Container Runtime Interface,容器运行时接口)的 gRPC 接口来间接执行的,意味着需要使用新的连接方式与 docker 通信,为了兼容以前的版本,k8s 提供了针对 docker 的 CRI 实现,也就是kubelet包下的dockershim包,dockershim是一个 grpc 服务,监听一个端口供 kubelet 连接,dockershim收到 kubelet 的请求后,将其转化为 REST API 请求,再发送给docker daemon。Kubernetes 项目之所以要在 kubelet 中引入这样一层单独的抽象,当然是为了对 Kubernetes 屏蔽下层容器运行时的差异。 解决思路再次体现了《代码大全2》里提到的那句经典名言:any problem in computer science can be sloved by another layer of indirecition。计算机科学领域的任何问题都可以通过增加一个中间层来解决,我们的 CRI shim就是加了这样一层。
**CRI 接口包括 RuntimeService 和 ImageService 两个服务,这两个服务可以在一个 gRPC server 中实现,也可以分开成两个独立服务。**目前社区的很多运行时都是将其在一个 gRPC server 里面实现。
ImageServiceServer 提供了 5 个接口,用于管理容器镜像。管理镜像的 ImageService 提供了 5 个接口:
关于容器镜像的操作比较简单,所以我们就暂且略过。接下来,我主要为你讲解一下 RuntimeService 部分。RuntimeService 则提供了更多的接口,按照功能可以划分为四组:
我们通过 kubectl 命令来运行一个 Pod,那么 Kubelet 就会通过 CRI 执行以下操作:
就完成了整个Container的生命周期。
CRI shim 对 Streaming API 的实现,依赖于一套独立的 Streaming Server 机制。Streaming API 用于客户端与容器进行交互,包括 Exec、PortForward 和 Attach 等三个接口。kubelet 内置的 Docker 通过 nsenter、socat 等方法来支持这些特性,但它们不一定适用于其他的运行时,也不支持 Linux 之外的其他平台。因而,CRI 也显式定义了这些 API,并且要求容器运行时返回一个 Streaming Server 的 URL 以便 kubelet 重定向 API Server 发送过来的流式请求。
因为所有容器的流式请求都会经过 kubelet,这可能会给节点的网络流量带来瓶颈,因而 CRI 要求容器运行时启动一个对应请求的单独的流服务器,将地址返回给 kubelet。kubelet 将这个信息再返回给 Kubernetes API Server,会直接打开与运行时提供的服务器相连的流连接,并通过它与客户端连通。
这样一个完整的 Exec 流程就如上图所示,分为多个阶段:
也就是说 apiserver 其实实际上是跟 streaming server 交互来获取我们的流式数据的。这样一来让我们的整个 CRI Server 接口更轻量、更可靠。
注意:当然,这个 Streaming Server 本身,是需要通过使用 SIG-Node 为你维护的 Streaming API 库来实现的。并且,Streaming Server 会在 CRI shim 启动时就一起启动。此外,Stream Server 这一部分具体怎么实现,完全可以由 CRI shim 的维护者自行决定。比如,对于 Docker 项目来说,dockershim 就是直接调用 Docker 的 Exec API 来作为实现的。
整个架构看起来非常直观。这里的 Meta services、Runtime service 与 Storage service 都是 containerd 提供的接口。它们是通用的容器相关的接口,包括镜像管理、容器运行时管理等。CRI 在这之上包装了一个 gRPC 的服务。右侧就是具体的容器的实现。比如说,创建容器时就要创建具体的 runtime 和它的containerd-shim。Container 和 Pod Sandbox组成了一个Pod。
CRI-containerd 的一个好处是,containerd 还额外实现了更丰富的容器接口,所以它可以用 containerd 提供的 ctr 工具来调用这些丰富的容器运行时接口,而不只是 CRI 接口
CRI实现了两个GRPC协议的API,提供两种服务ImageService和RuntimeService。
// grpcServices are all the grpc services provided by cri containerd.
type grpcServices interface {
runtime.RuntimeServiceServer
runtime.ImageServiceServer
}
// CRIService is the interface implement CRI remote service server.
type CRIService interface {
Run() error
// io.Closer is used by containerd to gracefully stop cri service.
io.Closer
plugin.Service
grpcServices
}
CRI的实现CRIService中包含了很多重要的组件:其中最重要的是cni.CNI,用于配置容器网络。还有containerd.Client,用于连接containerd来创建容器。
// criService implements CRIService.
type criService struct {
// config contains all configurations.
config criconfig.Config
// imageFSPath is the path to image filesystem.
imageFSPath string
// os is an interface for all required os operations.
os osinterface.OS
// sandboxStore stores all resources associated with sandboxes.
sandboxStore *sandboxstore.Store
// sandboxNameIndex stores all sandbox names and make sure each name
// is unique.
sandboxNameIndex *registrar.Registrar
// containerStore stores all resources associated with containers.
containerStore *containerstore.Store
// containerNameIndex stores all container names and make sure each
// name is unique.
containerNameIndex *registrar.Registrar
// imageStore stores all resources associated with images.
imageStore *imagestore.Store
// snapshotStore stores information of all snapshots.
snapshotStore *snapshotstore.Store
// netPlugin is used to setup and teardown network when run/stop pod sandbox.
netPlugin cni.CNI
// client is an instance of the containerd client
client *containerd.Client
// streamServer is the streaming server serves container streaming request.
streamServer streaming.Server
// eventMonitor is the monitor monitors containerd events.
eventMonitor *eventMonitor
// initialized indicates whether the server is initialized. All GRPC services
// should return error before the server is initialized.
initialized atomic.Bool
// cniNetConfMonitor is used to reload cni network conf if there is
// any valid fs change events from cni network conf dir.
cniNetConfMonitor *cniNetConfSyncer
// baseOCISpecs contains cached OCI specs loaded via `Runtime.BaseRuntimeSpec`
baseOCISpecs map[string]*oci.Spec
}
我们知道 Kubernetes 的一个运作的机制是面向终态的,在每一次调协的循环中,Kubelet 会向 apiserver 获取调度到本 Node 的 Pod 的数据,再做一个面向终态的处理,以达到我们预期的状态。
循环的第一步,首先通过 List 接口拿到容器的状态。确保有镜像,如果没有镜像则 pull 镜像再通过 Sandbox 和 Container 接口来创建容器。需要注意的是,我们的 CNI(容器网络接口)也是在 CRI 进行操作的,因为我们在创建 Pod 的时候需要同时创建网络资源然后注入到 Pod 中(PS:CNI包含在创建Pod 这个动作里)。接下来就是我们的容器和镜像。我们通过具体的容器创建引擎来创建一个具体的容器。
执行流程为:
发现 CRI 只是服务于 Kubernetes 的,而且它呈现向上汇报的状态。它是帮助 Kubernetes 的,它不帮助OCI的。所以说当你去做这个集成时候,你会发现尤其对于 VM gVisor\KataContainer 来说,它与 CRI 的很多假设或者是 API 的写法上是不对应的。所以你的集成工作会比较费劲,这是一个不 match 的状态。
最后一个就是我们维护起来非常困难,因为由于有了 CRI 之后,比如 RedHat 拥有自己的 CRI 实现叫 cri-o,他们和 containerd 在本质上没有任何区别,跑到最后都是靠 runC 起容器,为什么还需要cri-o这种东西?
我们不知道,如果我想使用Kata container与containerd多运行时的话,我需要给他们两个分别写两部分的一体化把 Kata 集成进去。这就很麻烦,就意味着我有 100 种这样的 CRI ,我就要写 100 个shim去集成,而且他们的功能全部都是重复的。
所以这就产生了Containerd ShimV2的这样的shim来解决这个问题。我们下回分解。
https://time.geekbang.org/column/article/71499?utm_campaign=guanwang&utm_source=baidu-ad&utm_medium=ppzq-pc&utm_content=title&utm_term=baidu-ad-ppzq-title
https://blog.frognew.com/2021/04/relearning-container-02.html
https://github.com/kubernetes-sigs/cri-tools/blob/master/docs/crictl.md
https://developer.aliyun.com/article/679993
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/EpX_HjDTVLAqgPr36YNk_w
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。