京东秒杀是京东最大的营销频道,近年来随着业务的高速发展,频道商品数量和用户流量都呈现出迅猛增长的态势。同时业务方规划未来频道商品数量会增加5至10倍,对商品池扩容诉求较为强烈,这对我们现有的系统架构提出了挑战。
为了应对商品数量激增引起的风险,秒杀后台组在年初成立了秒杀商品池扩容技术优化专项,在618前按计划完成了千万级商品池扩容的架构升级。本文主要介绍秒杀商品池扩容专项的优化经验。
京东秒杀频道业务主要包括两部分,一部分是频道核心服务,即直接面向终端用户提供频道服务;另一部分是维护秒杀商品池数据,为商详、购物车等多端提供秒杀商品读服务,以展示“京东秒杀”的促销氛围标签,我们称为秒杀商品打标服务。
图1. 京东秒杀频道业务
秒杀系统是一个高并发大流量系统,使用缓存技术来提高系统性能。在频道核心服务的历史业务迭代过程中,采用了在内存中全量缓存商品池数据的缓存方案,这是因为频道业务中存在全量商品按照多维度排序的诉求,同时在频道发展初期商品数量不多,采用全量缓存的方式内存压力不大,开发成本较低。由于秒杀商品存在时促销、库存有限的特点,对数据更新的实时性要求较高,我们通过ZK通知的方式实现商品数据更新。
原系统架构如图2所示,秒杀CMS系统在商品录入或更新时,以活动的维度将商品数据推动到JIMDB(京东内部分布式缓存与高速键值存储服务,类似于Redis)中,同时通过ZooKeeper发送通知。秒杀SOA系统监听通知后从JIMDB中获取最新的数据,更新本地缓存,以提供频道核心服务和商品打标服务。
图2. 京东秒杀原系统架构图
在以往大促期间,当商品池数量激增时,观察到系统的堆内存消耗过快,同时Minor GC垃圾回收效果有限,Minor GC回收后堆内存低点不断抬高,堆内存呈持续增长的态势,并且会规律性地定期猛增。Full GC较为频繁,对CPU利用率的影响较大,接口性能毛刺现象严重。
图3. 系统异常监控
通过JVM堆内存变化图可以看到:
1. 堆空间增长很快,且Minor GC无法回收新增的堆空间。
2. 堆空间呈现有规律的上升,且会定期猛增,推测和定时任务有关。
3. Full GC后,内存回收率高,排除内存泄漏。
4. Full GC对CPU利用率影响较大。
频繁GC对系统的稳定性和接口的性能造成严重的影响分析堆对象增长情况,通过 jmap -histo 指令在发生Full GC 前后打印JVM堆中的对象,如图4、图5所示:
图4. 发生Full GC前堆内存对象
图5. 发生Full GC后堆内存对象
从Full GC前后堆中对象分布情况分析,以品类秒杀为例,在Full GC 后堆中不到100万商品对象,占内存125M左右,和品类秒杀实际有效商品数量大致相当, String对象共占约385M左右。而在发生Full GC前,堆中品类秒杀商品数量达到了接近500万,占用内存达到了700M, 另外String对象占用内存达到1.2G。
结合系统架构分析,可以确定是在商品的覆盖更新过程中,旧对象未被回收而不断进入老年代,老年代内存占用越来越高,最终导致堆内存不足而产生Full GC。堆对象中的String对象也是这种更新方式的副产品,这是因为商品数据在JIMDB中以String方式存储,在更新时会从JIMDB中拉取到本地反序列化后得到对象列表,可以从图6所示问题代码中看到产生大String对象的原因。
图6. 问题代码
对于上述的全量更新场景,旧对象和临时产生的String对象满足垃圾回收的条件,为什么没有在Minor GC阶段被回收?我们知道大多数情况下,对象在新生代Eden区中分配,对象进入老年代有以下几种情况:
1. 大对象直接进入年老代:大对象即需要大量连续内存空间的Java对象,如长字符串及数组。大对象会导致内存剩余空间足够时,就提前触发垃圾收集以获取足够的连续空间来安置,同时大对象的频繁复制也会影响性能。虚拟机提供了一个-XX:PretenureSizeThreshold参数,使大于该阈值的对象直接在老年代分配。为避免临时String对象直接进入老年代的情况,我们显式关闭了该功能。
2. 长期存活的对象将进入年老代:虚拟机给每个对象定义了一个对象年龄计数器,在对象在Eden创建并经过第一次Minor GC后仍然存活,并能被Suivivor容纳的话,将会被移动到Survivor空间,并对象年龄设置为1。每经历一次Minor GC,年龄增加1岁,当到达阈值时(可以通过参数-XX: MaxTenuringThreshold设置,CMS垃圾回收器默认值为6),将会晋升老年代。上述分析情况,临时String对象不会存活过6次Minor GC。
3. 动态对象年龄判定:为了更好地适应不同程序内存状况,虚拟机并不硬性要求对象年龄达到MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中小于等于某个年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入年老代。
通过上述分析,我们发现临时String对象最有可能触发了动态对象年龄判定机制而进入老年代。打印虚拟机GC信息,并添加-XX: +PrintTenuringDistribution 参数来打印发生GC时新生代的对象年龄信息,得到图7所示GC日志信息:
图7. GC日志
从GC日志可以看到,Survivor空间大小为358M , Survivor区的目标使用率默认是50%,Desired Survivor size 是179M,age <= 2的对象大小总和为269M,因此虽然设定的晋升阈值是6,虚拟机动态计算晋升阈值为2,最终导致age大于等于2的对象都进入老年代。
我们尝试从优化JVM参数的方式解决问题,效果并不理想。做过的尝试有:
1. 增大年轻代的空间来减少对象进入老年代,结果适得其反,STW更加频繁,CPU利用率波动也更大。
2. 改用G1垃圾收集器,效果不明显,CPU利用率波动也更大。
3. 显式设置晋升老年代的阈值(MaxTenuringThreshold),试图推迟对象进入老年代的速度,无任何效果。
上述问题分析的结论对我们的启示是:如果在新生代中频繁产生朝生夕死的大对象,会触发虚拟机的动态对象年龄判定机制,降低对象进入老年代的门槛,导致堆内存增长过快。
01 双缓存区定时散列更新
通过上面的分析可以发现,为了防止堆内存增长过快,需要控制商品数据更新的粒度和频次。原有的商品更新方案是商品数据按照活动的维度全量覆盖更新,每个商品的状态变化都会触发更新操作。我们希望数据更新能控制在更小的范围,同时能够控制数据更新的频率,最终设计出双缓存区定时散列更新方案,如图8所示。
图8. 双缓存区定时散列更新示意图
该方案的实现是将活动下的商品以SKU维度散列到不同的桶中,更新的操作以桶的粒度进行。同时为了控制数据更新的频率,我们在SOA端设计了双缓存区定时切量的方式。在CMS商品数据更新时,会映射到需要更新的桶,并实时通知SOA端;在SOA端收到ZK通知后,会在读缓存区标记需要更新的桶,但不会实时的更新数据。在达到定时时间后,会自动切换读写缓存区,此时会读取读缓存区中标记的待更新桶,从JIMDB中获取桶对应的商品列表,完成数据的细粒度分段更新。
该方案散列份数和定时时间可以根据具体业务情况进行调整,在性能和实时性上取得平衡,在上线后取得了较好的优化效果。
02 引入本地LRU缓存
双缓存区定时散列更新的方案虽然在系统性能上得到了提升,但依然无法支持千万级商品的扩容。为了彻底摆脱机器内存对商品池容量的限制,我们启动了秒杀架构的全面升级,核心思路是引入本地LRU缓存组件,实现冷数据淘汰,以控制内存中缓存商品的总数量在安全区间。
系统拆分
原系统存在的问题是,频道核心服务和商品打标服务共用相同的基础数据,存在系统耦合的问题。从商品池角度分析,频道核心服务商品池是秒杀商品池的子集。从业务角度分析,频道核心服务业务逻辑复杂,调用链路长,响应时间长,商品打标服务逻辑简单,调用链路短,响应时间短。将频道核心服务和商品打标服务进行拆分,独立部署,实现资源隔离,这样可以根据业务特点做针对性优化。频道核心服务可以减少内存中商品缓存的数量,商品打标服务可以升级商品缓存方案,另外也可以规避架构升级过程中对频道核心服务的影响。
图9. 系统拆分
缓存方案优化
频道核心服务历史逻辑复杂,且直接面向终端用户,升级难度大。在扩容专项一期中的主要优化点是拆分出频道核心服务商品池,去除非频道展示商品,以减少商品缓存数量。一期优化主要聚焦于秒杀打标服务的缓存方案升级。在原有的系统架构中秒杀商品池全量缓存在内存中,这会导致商品数量激增时,JVM堆内存资源紧张,商品池的容量受到限制,且无法水平扩容。商品以活动的维度进行存储和更新,会导致大key的问题,在进行覆盖更新时会在内存中产生临时的大对象,不利于JVM垃圾回收表现。
图10. 缓存方案升级
对于拆封后的商品打标服务,缓存方案优化的总体思路是实现冷热数据的拆分。升级后的商品打标服务不再使用本地全量缓存,而是使用JIMDB全量缓存+本地LRU缓存组件的方式。对缓存组件的要求是在缓存数据达到预设商品数量上限时,实现冷数据的清退,同时具有较高的缓存命中率和读写性能。在对比常用的缓存框架Caffeine和 Guava Cache后最终采用Caffeine缓存,其优势有:
1. 性能更优。Caffeine的读写性能显著优于Guava, 这是由于Guava 中读写操作夹杂着过期时间的处理,一次 put 操作中有可能会触发淘汰操作,所以其读写性能会受到一定影响,而 Caffeine 对这些事件的操作是异步的,将事件提交至队列,通过默认的 ForkJoinPool.commonPool()或自己配置的线程池,进行取队列操作,再进行异步淘汰、过期操作。
2. 高命中率,低内存占用。Guava 使用分段LRU算法,而Caffeine 使用了一种结合 LRU、LFU 优点的算法:W-TinyLFU,可以使用较少的资源来记录访问频次,同时能够解决稀疏突发访问元素的问题。
升级后的架构图如图11所示:
图11. 升级后架构图
频道核心服务和商品打标服务独立部署,资源隔离。秒杀CMS 在商品录入和更新时,以SKU维度写入JIMDB中组成全量秒杀商品池。商品打标服务通过Caffeine 缓存的方式,设置写入写入30s过期,最大缓存200w商品数据,实现热数据缓存,过期数据和冷数据的淘汰。
03 引入布隆过滤器
在非秒杀SKU查询处理上,为了避免缓存穿透问题(即单个无效商品的高频次查询,如果本地缓存中没有则每次请求都会访问到JIMDB),我们对于非秒杀商品的查询结果,在本地缓存中存储一个空值标识,避免无效SKU请求每次都访问到JIMDB。商详、购物车等渠道商品池数量比秒杀商品池高几个数量级,秒杀查询服务请求SKU中存在大量的非秒杀商品,这会导致本地缓存的命中率降低,同时带来缓存雪崩的风险。
为了拦截大量非秒杀SKU的请求,我们引入过滤器机制。在本地过滤器的选择上,我们尝试使用所有有效商品SkuId组成的Set集合来生成本地过滤器,上线后观察到本地过滤器数据更新时会产生性能波动。分析发现这种方式空间复杂度高,内存占用比较高。过滤器优化为布隆过滤器后,内存占用降低,性能得到进一步提升。
在完成架构升级后,经过单机压测、灰度验证、灰度上线、全量压测等过程严格验证了新系统的性能和结果准确性,在618大促前新系统全量平稳上线。从近年来大促期间系统表现来看,优化效果显著,如图12、图13所示,主要体现在以下几个方面。
图12. 大促性能表现对比
1. 业务支撑:秒杀商品池数量持续增长,由于架构的调整全量商品缓存在JIMDB,新系统支持水平扩容,后续可支持更高数量级的商品,满足业务的长期规划。
2. 性能优化:大促期间打标服务的接口tp999持续下降,618大促接口性能提升90%,同时从接口性能对比上看,接口性能的毛刺现象得到解决。
3. 稳定性提升:GC频率持续下降,系统稳定性得到提高。
图13. 接口性能监控对比
本次秒杀商品池扩容优化专项通过优化商品更新方式、系统拆分、优化缓存方案等方式,实现了系统架构升级,提升了频道的商品容量和性能,达到了预设目标。
本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/DS27g9VYN9rpr3gZ0bIgVA
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。