写这篇文章的目的,是为了帮助更多的人理解 rosedb,我会从零开始实现一个简单的包含 PUT、GET、DELETE 操作的 k-v 存储引擎。
你可以将其看做是一个简易版本的 rosedb,就叫它 minidb 吧(mini 版本的 rosedb)。
无论你是 Go 语言初学者,还是想进阶 Go 语言,或者是对 k-v 存储感兴趣,都可以尝试自己动手实现一下,我相信一定会对你帮助很大的。
说到存储,其实解决的一个核心问题就是,怎么存放数据,怎么取出数据。在计算机的世界里,这个问题会更加的多样化。
计算机当中有内存和磁盘,内存是易失性的,掉电之后存储的数据全部丢失,所以,如果想要系统崩溃再重启之后依然正常使用,就不得不将数据存储在非易失性介质当中,最常见的便是磁盘。
所以,针对一个单机版的 k-v,我们需要设计数据在内存中应该怎么存放,在磁盘中应该怎么存放。
当然,已经有很多优秀的前辈们去探究过了,并且已经有了经典的总结,主要将数据存储的模型分为了两类:B+ 树和 LSM 树。
本文的重点不是讲这两种模型,所以只做简单介绍。
B+ 树
B+ 树由二叉查找树演化而来,通过增加每层节点的数量,来降低树的高度,适配磁盘的页,尽量减少磁盘 IO 操作。
B+ 树查询性能比较稳定,在写入或更新时,会查找并定位到磁盘中的位置并进行原地操作,注意这里是随机 IO,并且大量的插入或删除还有可能触发页分裂和合并,写入性能一般,因此 B+ 树适合读多写少的场景。
LSM 树
LSM Tree(Log Structured Merge Tree,日志结构合并树)其实并不是一种具体的树类型的数据结构,而只是一种数据存储的模型,它的核心思想基于一个事实:顺序 IO 远快于随机 IO。
和 B+ 树不同,在 LSM 中,数据的插入、更新、删除都会被记录成一条日志,然后追加写入到磁盘文件当中,这样所有的操作都是顺序 IO,因此 LSM 比较适用于写多读少的场景。
看了前面的两种基础存储模型,相信你已经对如何存取数据有了基本的了解,而 minidb 基于一种更加简单的存储结构,总体上它和 LSM 比较类似。
我先不直接干巴巴的讲这个模型的概念,而是通过一个简单的例子来看一下 minidb 当中数据 PUT、GET、DELETE 的流程,借此让你理解这个简单的存储模型。
PUT
我们需要存储一条数据,分别是 key 和 value,首先,为预防数据丢失,我们会将这个 key 和 value 封装成一条记录(这里把这条记录叫做 Entry),追加到磁盘文件当中。Entry 的里面的内容,大致是 key、value、key 的大小、value 的大小、写入的时间。
所以磁盘文件的结构非常简单,就是多个 Entry 的集合。
磁盘更新完了,再更新内存,内存当中可以选择一个简单的数据结构,比如哈希表。哈希表的 key 对应存放的是 Entry 在磁盘中的位置,便于查找时进行获取。
这样,在 minidb 当中,一次数据存储的流程就完了,只有两个步骤:一次磁盘记录的追加,一次内存当中的索引更新。
GET
再来看 GET 获取数据,首先在内存当中的哈希表查找到 key 对应的索引信息,这其中包含了 value 存储在磁盘文件当中的位置,然后直接根据这个位置,到磁盘当中去取出 value 就可以了。
DEL
然后是删除操作,这里并不会定位到原记录进行删除,而还是将删除的操作封装成 Entry,追加到磁盘文件当中,只是这里需要标识一下 Entry 的类型是删除。
然后在内存当中的哈希表删除对应的 key 的索引信息,这样删除操作便完成了。
可以看到,不管是插入、查询、删除,都只有两个步骤:一次内存中的索引更新,一次磁盘文件的记录追加。所以无论数据规模如何, minidb 的写入性能十分稳定。
Merge
最后再来看一个比较重要的操作,前面说到,磁盘文件的记录是一直在追加写入的,这样会导致文件容量也一直在增加。并且对于同一个 key,可能会在文件中存在多条 Entry(回想一下,更新或删除 key 内容也会追加记录),那么在数据文件当中,其实存在冗余的 Entry 数据。
举一个简单的例子,比如针对 key A, 先后设置其 value 为 10、20、30,那么磁盘文件中就有三条记录:
此时 A 的最新值是 30,那么其实前两条记录已经是无效的了。
针对这种情况,我们需要定期合并数据文件,清理无效的 Entry 数据,这个过程一般叫做 merge。
merge 的思路也很简单,需要取出原数据文件的所有 Entry,将有效的 Entry 重新写入到一个新建的临时文件中,最后将原数据文件删除,临时文件就是新的数据文件了。
这就是 minidb 底层的数据存储模型,它的名字叫做 bitcask,当然 rosedb 采用的也是这种模型。它本质上属于类 LSM 的模型,核心思想是利用顺序 IO 来提升写性能,只不过在实现上,比 LSM 简单多了。
介绍完了底层的存储模型,就可以开始代码实现了,我将完整的代码实现放到了我的 Github 上面,地址:
https://github.com/roseduan/minidb
文章当中就截取部分关键的代码。
首先是打开数据库,需要先加载数据文件,然后取出文件中的 Entry 数据,还原索引状态,关键部分代码如下:
func Open(dirPath string) (*MiniDB, error) {
// 如果数据库目录不存在,则新建一个
if _, err := os.Stat(dirPath); os.IsNotExist(err) {
if err := os.MkdirAll(dirPath, os.ModePerm); err != nil {
return nil, err
}
}
// 加载数据文件
dbFile, err := NewDBFile(dirPath)
if err != nil {
return nil, err
}
db := &MiniDB{
dbFile: dbFile,
indexes: make(map[string]int64),
dirPath: dirPath,
}
// 加载索引
db.loadIndexesFromFile(dbFile)
return db, nil
}
再来看看 PUT 方法,流程和上面的描述一样,先更新磁盘,写入一条记录,再更新内存:
func (db *MiniDB) Put(key []byte, value []byte) (err error) {
offset := db.dbFile.Offset
// 封装成 Entry
entry := NewEntry(key, value, PUT)
// 追加到数据文件当中
err = db.dbFile.Write(entry)
// 写到内存
db.indexes[string(key)] = offset
return
}
GET 方法需要先从内存中取出索引信息,判断是否存在,不存在直接返回,存在的话从磁盘当中取出数据。
func (db *MiniDB) Get(key []byte) (val []byte, err error) {
// 从内存当中取出索引信息
offset, ok := db.indexes[string(key)]
// key 不存在
if !ok {
return
}
// 从磁盘中读取数据
var e *Entry
e, err = db.dbFile.Read(offset)
if err != nil && err != io.EOF {
return
}
if e != nil {
val = e.Value
}
return
}
DEL 方法和 PUT 方法类似,只是 Entry 被标识为了 DEL ,然后封装成 Entry 写到文件当中:
func (db *MiniDB) Del(key []byte) (err error) {
// 从内存当中取出索引信息
_, ok := db.indexes[string(key)]
// key 不存在,忽略
if !ok {
return
}
// 封装成 Entry 并写入
e := NewEntry(key, nil, DEL)
err = db.dbFile.Write(e)
if err != nil {
return
}
// 删除内存中的 key
delete(db.indexes, string(key))
return
}
最后是重要的合并数据文件操作,流程和上面的描述一样,关键代码如下:
func (db *MiniDB) Merge() error {
// 读取原数据文件中的 Entry
for {
e, err := db.dbFile.Read(offset)
if err != nil {
if err == io.EOF {
break
}
return err
}
// 内存中的索引状态是最新的,直接对比过滤出有效的 Entry
if off, ok := db.indexes[string(e.Key)]; ok && off == offset {
validEntries = append(validEntries, e)
}
offset += e.GetSize()
}
if len(validEntries) > 0 {
// 新建临时文件
mergeDBFile, err := NewMergeDBFile(db.dirPath)
if err != nil {
return err
}
defer os.Remove(mergeDBFile.File.Name())
// 重新写入有效的 entry
for _, entry := range validEntries {
writeOff := mergeDBFile.Offset
err := mergeDBFile.Write(entry)
if err != nil {
return err
}
// 更新索引
db.indexes[string(entry.Key)] = writeOff
}
// 删除旧的数据文件
os.Remove(db.dbFile.File.Name())
// 临时文件变更为新的数据文件
os.Rename(mergeDBFile.File.Name(), db.dirPath+string(os.PathSeparator)+FileName)
db.dbFile = mergeDBFile
}
return nil
}
除去测试文件,minidb 的核心代码只有 300 行,麻雀虽小,五脏俱全,它已经包含了 bitcask 这个存储模型的主要思想,并且也是 rosedb 的底层基础。
理解了 minidb 之后,基本上就能够完全掌握 bitcask 这种存储模型,多花点时间,相信对 rosedb 也能够游刃有余了。
进一步,如果你对 k-v 存储这方面感兴趣,可以更加深入的去研究更多相关的知识,bitcask 虽然简洁易懂,但是问题也不少,rosedb 在实践的过程当中,对其进行了一些优化,但目前还是有不少的问题存在。
有的人可能比较疑惑,bitcask 这种模型简单,是否只是一个玩具,在实际的生产环境中有应用吗?答案是肯定的。
bitcask 最初源于 Riak 这个项目的底层存储模型,而 Riak 是一个分布式 k-v 存储,在 NoSQL 的排名中也名列前茅:
豆瓣所使用的的分布式 k-v 存储,其实也是基于 bitcask 模型,并对其进行了很多优化。目前纯粹基于 bitcask 模型的 k-v 并不是很多,所以你可以多去看看 rosedb 的代码,可以提出自己的意见建议,一起完善这个项目。
最后,附上相关项目地址:
minidb:https://github.com/roseduan/minidb
rosedb:https://github.com/roseduan/rosedb
参考资料:
https://riak.com/assets/bitcask-intro.pdf
https://medium.com/@arpitbhayani/bitcask-a-log-structured-fast-kv-store-c6c728a9536b
题图:from wallheaven.cc
本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/tDJ_vVYJR7OfARB-mdp3yg
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。