本文主要讲述如何快速如何分库分表,不会深入,但干货满满。本文主要内容如下:
不管是IO瓶颈还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载的活跃连接数的阈值。在业务service来看, 就是可用数据库连接少甚至无连接可用,接下来就可以想象了(并发量、吞吐量、崩溃)。
1、概念:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。
2、结果:
3、场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库的情况下。
4、分析:库多了,io和cpu的压力自然可以成倍缓解
1、概念:以字段为依据,按照一定策略(hash、range等),讲一个表中的数据拆分到多个表中。
2、结果:
3、场景:系统绝对并发量没有上来,只是单表的数据量太多,影响了SQL效率,加重了CPU负担,以至于成为瓶颈,可以考虑水平分表。
4、分析:单表的数据量少了,单次执行SQL执行效率高了,自然减轻了CPU的负担。
1、概念:以表为依据,按照业务归属不同,将不同的表拆分到不同的库中。
2、结果:
3、场景:系统绝对并发量上来了,并且可以抽象出单独的业务模块的情况下。
4、分析:到这一步,基本上就可以服务化了。例如:随着业务的发展,一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。再者,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。
1、概念:以字段为依据,按照字段的活跃性,将表中字段拆到不同的表中(主表和扩展表)。
2、结果:
3、场景:系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大,以至于数据库缓存的数据行减少,查询时回去读磁盘数据产生大量随机读IO,产生IO瓶颈。
4、分析:可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能经常会查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表,这样更多的热点数据就能被缓存下来,进而减少了随机读IO。拆了之后,要想获取全部数据就需要关联两个表来取数据。
但记住千万别用join,因为join不仅会增加CPU负担并且会将两个表耦合在一起(必须在一个数据库实例上)。关联数据应该在service层进行,分别获取主表和扩展表的数据,然后用关联字段关联得到全部数据。
分库分表能有效缓解单机和单表带来的性能瓶颈和压力,突破网络IO、硬件资源、连接数的瓶颈,同时也带来一些问题,下面将描述这些问题和解决思路。
当更新内容同时存在于不同库找那个,不可避免会带来跨库事务问题。跨分片事务也是分布式事务,没有简单的方案,一般可使用“XA协议”和“两阶段提交”处理。
分布式事务能最大限度保证了数据库操作的原子性。但在提交事务时需要协调多个节点,推后了提交事务的时间点,延长了事务的执行时间,导致事务在访问共享资源时发生冲突或死锁的概率增高。随着数据库节点的增多,这种趋势会越来越严重,从而成为系统在数据库层面上水平扩展的枷锁。
对于那些性能要求很高,但对一致性要求不高的系统,往往不苛求系统的实时一致性,只要在允许的时间段内达到最终一致性即可,可采用事务补偿的方式。与事务在执行中发生错误立刻回滚的方式不同,事务补偿是一种事后检查补救的措施,一些常见的实现方法有:对数据进行对账检查,基于日志进行对比,定期同标准数据来源进行同步等。
切分之前,系统中很多列表和详情表的数据可以通过join来完成,但是切分之后,数据可能分布在不同的节点上,此时join带来的问题就比较麻烦了,考虑到性能,尽量避免使用Join查询。解决的一些方法:
全局表,也可看做“数据字典表”,就是系统中所有模块都可能依赖的一些表,为了避免库join查询,可以将这类表在每个数据库中都保存一份。这些数据通常很少修改,所以不必担心一致性的问题。
一种典型的反范式设计,利用空间换时间,为了性能而避免join查询。例如,订单表在保存userId的时候,也将userName也冗余的保存一份,这样查询订单详情顺表就可以查到用户名userName,就不用查询买家user表了。但这种方法适用场景也有限,比较适用依赖字段比较少的情况,而冗余字段的一致性也较难保证。
在系统service业务层面,分两次查询,第一次查询的结果集找出关联的数据id,然后根据id发起器二次请求得到关联数据,最后将获得的结果进行字段组装。这是比较常用的方法。
关系型数据库中,如果已经确定了表之间的关联关系(如订单表和订单详情表),并且将那些存在关联关系的表记录存放在同一个分片上,那么就能较好地避免跨分片join的问题,可以在一个分片内进行join。在1:1或1:n的情况下,通常按照主表的ID进行主键切分。
跨节点多库进行查询时,会出现limit分页、order by 排序等问题。分页需要按照指定字段进行排序,当排序字段就是分页字段时,通过分片规则就比较容易定位到指定的分片;当排序字段非分片字段时,就变得比较复杂.需要先在不同的分片节点中将数据进行排序并返回,然后将不同分片返回的结果集进行汇总和再次排序,最终返回给用户如下图:
上图只是取第一页的数据,对性能影响还不是很大。但是如果取得页数很大,情况就变得复杂的多,因为各分片节点中的数据可能是随机的,为了排序的准确性,需要将所有节点的前N页数据都排序好做合并,最后再进行整体排序,这样的操作很耗费CPU和内存资源,所以页数越大,系统性能就会越差。在使用Max、Min、Sum、Count之类的函数进行计算的时候,也需要先在每个分片上执行相应的函数,然后将各个分片的结果集进行汇总再次计算。
在分库分表环境中,由于表中数据同时存在不同数据库中,主键值平时使用的自增长将无用武之地,某个分区数据库自生成ID无法保证全局唯一。因此需要单独设计全局主键,避免跨库主键重复问题。这里有一些策略:
UUID标准形式是32个16进制数字,分为5段,形式是8-4-4-4-12的36个字符。UUID是最简单的方案,本地生成,性能高,没有网络耗时,但是缺点明显,占用存储空间多,另外作为主键建立索引和基于索引进行查询都存在性能问题,尤其是InnoDb引擎下,UUID的无序性会导致索引位置频繁变动,导致分页。
在数据库中建立sequence表:
CREATE TABLE `sequence` (
`id` bigint(20) unsigned NOT NULL auto_increment,
`stub` char(1) NOT NULL default '',
PRIMARY KEY (`id`),
UNIQUE KEY `stub` (`stub`)
) ENGINE=MyISAM;
复制代码
stub字段设置为唯一索引,同一stub值在sequence表中只有一条记录,可以同时为多张表生成全局ID。使用MyISAM引擎而不是InnoDb,已获得更高的性能。MyISAM使用的是表锁,对表的读写是串行的,所以不用担心并发时两次读取同一个ID。当需要全局唯一的ID时,执行:
REPLACE INTO sequence (stub) VALUES ('a');
SELECT 1561439;
复制代码
此方案较为简单,但缺点较为明显:存在单点问题,强依赖DB,当DB异常时,整个系统不可用。配置主从可以增加可用性。另外性能瓶颈限制在单台Mysql的读写性能。另有一种主键生成策略,类似sequence表方案,更好的解决了单点和性能瓶颈问题。这一方案的整体思想是:建立2个以上的全局ID生成的服务器,每个服务器上只部署一个数据库,每个库有一张sequence表用于记录当前全局ID。表中增长的步长是库的数量,起始值依次错开,这样就能将ID的生成散列到各个数据库上
这种方案将生成ID的压力均匀分布在两台机器上,同时提供了系统容错,第一台出现了错误,可以自动切换到第二台获取ID。但有几个缺点:系统添加机器,水平扩展较复杂;每次获取ID都要读取一次DB,DB的压力还是很大,只能通过堆机器来提升性能。
img
Twitter的snowfalke算法解决了分布式系统生成全局ID的需求,生成64位Long型数字,组成部分:
当业务高速发展、面临性能和存储瓶颈时,才会考虑分片设计,此时就不可避免的需要考虑历史数据的迁移问题。一般做法是先读出历史数据,然后按照指定的分片规则再将数据写入到各分片节点中。此外还需要根据当前的数据量库的QPS,以及业务发展速度,进行容量规划,推算出大概需要多少分片(一般建议单个分片的单表数据量不超过1000W)
并不是所有表都需要切分,主要还是看数据的增长速度。切分后在某种程度上提升了业务的复杂程度。不到万不得已不要轻易使用分库分表这个“大招”,避免“过度设计”和“过早优化”。分库分表之前,先尽力做力所能及的优化:升级硬件、升级网络、读写分离、索引优化等。当数据量达到单表瓶颈后,再考虑分库分表。
这里的运维是指:
这里就不举例了。在实际业务中都可能会碰到,有些不经常访问或者更新频率低的字段应该从大表中分离出去。
随着业务的快速发展,单表中的数据量会持续增长,当性能接近瓶颈时,就需要考虑水平切分,做分库分表了。
总结
关于分库分表,千万不要为了分库分表而分库分表,要看具体业务和目前的状态,也有的时候可能会考虑将来的发展情况。一上来就搞分库分表,可能会得不尝试。另外分库分表的工具很多,建议先针对性的进行调研,看看是否满足自己的业务场景。
参考:http://gov08.cn/EDQ9c
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/kaCN4mT8ZdgOqEnWDTpz4A
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。