神器 celery 源码解析 - 6

发表于 3年以前  | 总阅读数:317 次

Celery是一款非常简单、灵活、可靠的分布式系统,可用于处理大量消息,并且提供了一整套操作此系统的工具。Celery 也是一款消息队列工具,可用于处理实时数据以及任务调度。

本文是是celery源码解析的第篇,在前五篇里分别介绍了:

  1. 神器 celery 源码解析- vine实现Promise功能
  2. 神器 celery 源码解析- py-amqp实现AMQP协议
  3. 神器 celery 源码解析- kombu,一个python实现的消息库
  4. 神器 celery 源码解析- kombu的企业级算法
  5. 神器 celery 源码解析- celery启动流程分析

本章我们跟着日志一起看看一次完整的任务调度流程,从另外一个角度了解启动过程中celery都做了什么。

worker模式启动流程

我们启动celery的worker, 启动大概分成3个阶段,先看第一阶段创建蓝图:

✗ celery -A myapp worker -l DEBUG
[2021-11-24 15:53:12,984: DEBUG/MainProcess] | Worker: Preparing bootsteps.
[2021-11-24 15:53:12,988: DEBUG/MainProcess] | Worker: Building graph...
[2021-11-24 15:53:12,988: DEBUG/MainProcess] | Worker: New boot order: {StateDB, Timer, Hub, Pool, Autoscaler, Beat, Consumer}
[2021-11-24 15:53:13,005: DEBUG/MainProcess] | Consumer: Preparing bootsteps.
[2021-11-24 15:53:13,005: DEBUG/MainProcess] | Consumer: Building graph...
[2021-11-24 15:53:13,038: DEBUG/MainProcess] | Consumer: New boot order: {Connection, Events, Mingle, Tasks, Control, Gossip, Agent, Heart, event loop}

这一阶段主要启动了worker和consumer2个蓝图, 下面是蓝图的创建和日志可以完整对应:

class Blueprint:
    def apply(self, parent, **kwargs):
        # 创建蓝图
        self._debug('Preparing bootsteps.')
        order = self.order = []
        steps = self.steps = self.claim_steps()

        self._debug('Building graph...')
        for S in self._finalize_steps(steps):
            step = S(parent, **kwargs)
            steps[step.name] = step
            order.append(step)
        self._debug('New boot order: {%s}',
                    ', '.join(s.alias for s in self.order))
        for step in order:
            step.include(parent)
        return self

第一个Worker蓝图在WorkController中,包括了下面一些步骤:

class WorkController:

    class Blueprint(bootsteps.Blueprint):
    """Worker bootstep blueprint."""

    name = 'Worker'
    default_steps = {
        'celery.worker.components:Hub',
        'celery.worker.components:Pool',
        'celery.worker.components:Beat',
        'celery.worker.components:Timer',
        'celery.worker.components:StateDB',
        'celery.worker.components:Consumer',
        'celery.worker.autoscale:WorkerComponent',
    }

第二个Consumer蓝图在Consumer中,包括了下面一些步骤:

class Consumer:
    """Consumer blueprint."""
    class Blueprint(bootsteps.Blueprint):
    """Consumer blueprint."""

    name = 'Consumer'
    default_steps = [
        'celery.worker.consumer.connection:Connection',
        'celery.worker.consumer.mingle:Mingle',
        'celery.worker.consumer.events:Events',
        'celery.worker.consumer.gossip:Gossip',
        'celery.worker.consumer.heart:Heart',
        'celery.worker.consumer.control:Control',
        'celery.worker.consumer.tasks:Tasks',
        'celery.worker.consumer.consumer:Evloop',
        'celery.worker.consumer.agent:Agent',
    ]

创建完2个蓝图后,并没有立即启动蓝图,转而进入第二阶段创建启动worker,日志输出如下:

...
celery@192.168.5.28 v5.1.2 (sun-harmonics)

macOS-10.16-x86_64-i386-64bit 2021-11-24 11:04:09

[config]
.> app:         myapp:0x7fc898739ac0
.> transport:   redis://localhost:6379/0
.> results:     redis://localhost:6379/0
.> concurrency: 12 (prefork)
.> task events: OFF (enable -E to monitor tasks in this worker)

[queues]
.> celery           exchange=celery(direct) key=celery


[tasks]
  . celery.accumulate
  . celery.backend_cleanup
  . celery.chain
  . celery.chord
  . celery.chord_unlock
  . celery.chunks
  . celery.group
  . celery.map
  . celery.starmap
  . myapp.add

...

这个过程app创建完成,把当前的配置信息,task列表都展示出来。展示信息的模版:


BANNER = """\
{hostname} v{version}

{platform} {timestamp}

[config]
.> app:         {app}
.> transport:   {conninfo}
.> results:     {results}
.> concurrency: {concurrency}
.> task events: {events}

[queues]
{queues}
"""

EXTRA_INFO_FMT = """
[tasks]
{tasks}
"""

task信息来自app的tasks,在上篇我们介绍过,其实就是TaskRegistry;并发模式默认使用的prefork,多进程模式;然后是AMQP的消费者,queue,exchange等信息:

def extra_info(self):
    if self.loglevel <= logging.INFO:
        include_builtins = self.loglevel <= logging.DEBUG
        tasklist = sep.join(
            f'  . {task}' for task in sorted(self.app.tasks)
            if (not task.startswith(int_) if not include_builtins else task)
        )
        return EXTRA_INFO_FMT.format(tasks=tasklist)

def startup_info(self, artlines=True):
    app = self.app
    concurrency = str(self.concurrency)
    appr = '{}:{:#x}'.format(app.main or '__main__', id(app))
    ...
    banner = BANNER.format(
        app=appr,
        hostname=safe_str(self.hostname),
        timestamp=datetime.now().replace(microsecond=0),
        version=VERSION_BANNER,
        conninfo=self.app.connection().as_uri(),
        results=self.app.backend.as_uri(),
        concurrency=concurrency,
        platform=safe_str(_platform.platform()),
        events=events,
        queues=app.amqp.queues.format(indent=0, indent_first=False),
    ).splitlines()
    ...

我们可以查看celery的进程数,确认总共创建了12个进程(进程数是通过cpu核数计算出来):

➜  ~ ps -ef | grep celery
  501 72465 68316   0  3:53下午 ttys003    0:10.17 /Library/Frameworks/Python.framework/Versions/3.8/Resources/Python.app/Contents/MacOS/Python /Users/yoo/work/yuanmahui/python/.venv/bin/celery -A myapp worker -l DEBUG
  ...
  501 72479 72465   0  3:53下午 ttys003    0:00.01 /Library/Frameworks/Python.framework/Versions/3.8/Resources/Python.app/Contents/MacOS/Python /Users/yoo/work/yuanmahui/python/.venv/bin/celery -A myapp worker -l DEBUG
  501 80540 71485   0  5:33下午 ttys005    0:00.00 grep --color=auto --exclude-dir=.bzr --exclude-dir=CVS --exclude-dir=.git --exclude-dir=.hg --exclude-dir=.svn celery

除了默认的多进程方式,celery还支持下面这些并发模式:

ALIASES = {
    'prefork': 'celery.concurrency.prefork:TaskPool',
    'eventlet': 'celery.concurrency.eventlet:TaskPool',
    'gevent': 'celery.concurrency.gevent:TaskPool',
    'solo': 'celery.concurrency.solo:TaskPool',
    'processes': 'celery.concurrency.prefork:TaskPool',  # XXX compat alias
    'threads': 'celery.concurrency.thread:TaskPool'
}

def get_implementation(cls):
    """Return pool implementation by name."""
    return symbol_by_name(cls, ALIASES)

threads 需要concurrent.futures支持,也就是python3.2版本以上

worker启动的第3阶段就是启动蓝图,日志如下:

[2021-11-24 15:53:13,062: DEBUG/MainProcess] | Worker: Starting Hub
[2021-11-24 15:53:13,062: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:13,062: DEBUG/MainProcess] | Worker: Starting Pool
[2021-11-24 15:53:13,410: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:13,411: DEBUG/MainProcess] | Worker: Starting Consumer
[2021-11-24 15:53:13,411: DEBUG/MainProcess] | Consumer: Starting Connection
[2021-11-24 15:53:15,902: INFO/MainProcess] Connected to redis://localhost:6379/0
[2021-11-24 15:53:15,902: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:15,902: DEBUG/MainProcess] | Consumer: Starting Events
[2021-11-24 15:53:15,918: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:15,918: DEBUG/MainProcess] | Consumer: Starting Mingle
[2021-11-24 15:53:15,918: INFO/MainProcess] mingle: searching for neighbors
[2021-11-24 15:53:16,966: INFO/MainProcess] mingle: all alone
[2021-11-24 15:53:16,966: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:16,967: DEBUG/MainProcess] | Consumer: Starting Tasks
[2021-11-24 15:53:16,975: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:16,975: DEBUG/MainProcess] | Consumer: Starting Control
[2021-11-24 15:53:16,988: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:16,988: DEBUG/MainProcess] | Consumer: Starting Gossip
[2021-11-24 15:53:17,001: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:17,002: DEBUG/MainProcess] | Consumer: Starting Heart
[2021-11-24 15:53:17,008: DEBUG/MainProcess] ^-- substep ok
[2021-11-24 15:53:17,008: DEBUG/MainProcess] | Consumer: Starting event loop
[2021-11-24 15:53:17,008: DEBUG/MainProcess] | Worker: Hub.register Pool...
[2021-11-24 15:53:17,009: INFO/MainProcess] celery@192.168.5.28 ready.
[2021-11-24 15:53:17,010: DEBUG/MainProcess] basic.qos: prefetch_count->48

在worker启动中,我们需要关注worker蓝图的hub,pool二步(step),consumer蓝图的connection,events,mingle,task,control,gossip,heart和Evloop七步(step)。

beat模式启动流程

beat模式的启动和worker模式不一样。beat模式主要是定时处理,并且beat模式不执行具体的任务,只是负责触发定时任务。其启动日志如下:

✗ celery -A myapp beat -l DEBUG
celery beat v5.0.5 (singularity) is starting.
__    -    ... __   -        _
LocalTime -> 2021-12-05 15:40:39
Configuration ->
    . broker -> redis://localhost:6379/0
    . loader -> celery.loaders.app.AppLoader
    . scheduler -> celery.beat.PersistentScheduler
    . db -> celerybeat-schedule
    . logfile -> [stderr]@%DEBUG
    . maxinterval -> 5.00 minutes (300s)
[2021-12-05 15:40:39,639: DEBUG/MainProcess] Setting default socket timeout to 30
[2021-12-05 15:40:39,639: INFO/MainProcess] beat: Starting...
[2021-12-05 15:40:39,667: DEBUG/MainProcess] Current schedule:
<ScheduleEntry: celery.backend_cleanup celery.backend_cleanup() <crontab: 0 4 * * * (m/h/d/dM/MY)>
[2021-12-05 15:40:39,668: DEBUG/MainProcess] beat: Ticking with max interval->5.00 minutes
[2021-12-05 15:40:39,668: DEBUG/MainProcess] beat: Waking up in 5.00 minutes.
[2021-12-05 15:45:39,608: DEBUG/MainProcess] beat: Synchronizing schedule...
[2021-12-05 15:45:39,609: DEBUG/MainProcess] beat: Waking up in 5.00 minutes.

从日志可以看到beat模式启动也大概可以分成2个阶段。第一个阶段就是创建和启动任务调度器,由beat命令提供:

class Beat:
    """Beat as a service."""

    def run(self):
        print(str(self.colored.cyan(
            f'celery beat v{VERSION_BANNER} is starting.')))
        self.init_loader()
        self.set_process_title()
        self.start_scheduler()

第二个阶段,任务调度器开始时间循环:

# celery/beat.py

class Service:
    """Celery periodic task service."""

    scheduler_cls = PersistentScheduler

    def start(self, embedded_process=False):
        info('beat: Starting...')
        debug('beat: Ticking with max interval->%s',
              humanize_seconds(self.scheduler.max_interval))

        signals.beat_init.send(sender=self)
        if embedded_process:
            signals.beat_embedded_init.send(sender=self)
            platforms.set_process_title('celery beat')

        try:
            while not self._is_shutdown.is_set():
                interval = self.scheduler.tick()
                if interval and interval > 0.0:
                    debug('beat: Waking up %s.',
                          humanize_seconds(interval, prefix='in '))
                    time.sleep(interval)
                    if self.scheduler.should_sync():
                        self.scheduler._do_sync()
        except (KeyboardInterrupt, SystemExit):
            self._is_shutdown.set()
        finally:
            self.sync()

这里的时间循环使用一个while循环去完成,每次tick都会检查是否有需要执行的任务,默认5分钟检查一次。

如果到达任务执行的时刻,则是通过下面的apply_async发送到worker(远程)去执行:

def apply_async(self, entry, producer=None, advance=True, **kwargs):
    # Update time-stamps and run counts before we actually execute,
    # so we have that done if an exception is raised (doesn't schedule
    # forever.)
    entry = self.reserve(entry) if advance else entry
    task = self.app.tasks.get(entry.task)

    try:
        entry_args = [v() if isinstance(v, BeatLazyFunc) else v for v in (entry.args or [])]
        entry_kwargs = {k: v() if isinstance(v, BeatLazyFunc) else v for k, v in entry.kwargs.items()}
        return task.apply_async(entry_args, entry_kwargs,
                                    producer=producer,
                                    **entry.options)

multi模式启动流程

使用multi模式启动celery,可以让celery以服务的形式在background执行任务,并且可以启动更多的celery的执行进程。使用下面命令启动2个node ,w1和w2。

✗ celery multi start w1 w2 -A myapp -l DEBUG
celery multi v5.0.5 (singularity)
> Starting nodes...
 > w1@bogon: OK
 > w2@bogon: OK

注意这个命令需要sudo权限

使用下面命令监测celery服务的状态。

✗ celery -A myapp status
->  w1@bogon: OK
->  w2@bogon: OK

2 nodes online.

w1的启动流程会写入到日志,日志内容如下:

✗ cat /var/log/celery/w1.log
[2021-12-05 15:59:11,161: DEBUG/MainProcess] | Worker: Preparing bootsteps.
[2021-12-05 15:59:11,162: DEBUG/MainProcess] | Worker: Building graph...
[2021-12-05 15:59:11,163: DEBUG/MainProcess] | Worker: New boot order: {Beat, StateDB, Timer, Hub, Pool, Autoscaler, Consumer}
[2021-12-05 15:59:11,175: DEBUG/MainProcess] | Consumer: Preparing bootsteps.
[2021-12-05 15:59:11,175: DEBUG/MainProcess] | Consumer: Building graph...
[2021-12-05 15:59:11,206: DEBUG/MainProcess] | Consumer: New boot order: {Connection, Events, Mingle, Tasks, Control, Agent, Gossip, Heart, event loop}
[2021-12-05 15:59:11,219: DEBUG/MainProcess] | Worker: Starting Hub
[2021-12-05 15:59:11,219: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:11,220: DEBUG/MainProcess] | Worker: Starting Pool
[2021-12-05 15:59:11,517: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:11,518: DEBUG/MainProcess] | Worker: Starting Consumer
[2021-12-05 15:59:11,518: DEBUG/MainProcess] | Consumer: Starting Connection
[2021-12-05 15:59:11,549: INFO/MainProcess] Connected to redis://localhost:6379/0
[2021-12-05 15:59:11,549: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:11,549: DEBUG/MainProcess] | Consumer: Starting Events
[2021-12-05 15:59:11,561: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:11,561: DEBUG/MainProcess] | Consumer: Starting Mingle
[2021-12-05 15:59:11,562: INFO/MainProcess] mingle: searching for neighbors
[2021-12-05 15:59:12,602: INFO/MainProcess] mingle: all alone
[2021-12-05 15:59:12,602: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:12,603: DEBUG/MainProcess] | Consumer: Starting Tasks
[2021-12-05 15:59:12,609: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:12,609: DEBUG/MainProcess] | Consumer: Starting Control
[2021-12-05 15:59:12,621: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:12,622: DEBUG/MainProcess] | Consumer: Starting Gossip
[2021-12-05 15:59:12,632: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:12,633: DEBUG/MainProcess] | Consumer: Starting Heart
[2021-12-05 15:59:12,638: DEBUG/MainProcess] ^-- substep ok
[2021-12-05 15:59:12,638: DEBUG/MainProcess] | Consumer: Starting event loop
[2021-12-05 15:59:12,638: DEBUG/MainProcess] | Worker: Hub.register Pool...
[2021-12-05 15:59:12,639: INFO/MainProcess] w1@bogon ready.
[2021-12-05 15:59:12,639: DEBUG/MainProcess] basic.qos: prefetch_count->48
[2021-12-05 15:59:18,039: DEBUG/MainProcess] pidbox received method hello(from_node='w2@bogon', revoked={}) [reply_to:{'exchange': 'reply.celery.pidbox', 'routing_key': '196c0b68-a329-3e09-a1cf-54abb5e057db'} ticket:e640e757-9514-436c-8548-0ddcbe15f9a4]
[2021-12-05 15:59:18,040: INFO/MainProcess] sync with w2@bogon
[2021-12-05 15:59:19,088: DEBUG/MainProcess] w2@bogon joined the party

w1的启动方式和worker模式基本一致,特别的地方在日志的最后部分显示w2启动完成后,w1和w2进行了互联。对应可以在w2的日志中看到w1的连接信息:


✗ cat /var/log/celery/w2.log
...
[2021-12-05 15:59:19,089: INFO/MainProcess] w2@bogon ready.
[2021-12-05 15:59:19,089: DEBUG/MainProcess] basic.qos: prefetch_count->48
[2021-12-05 15:59:20,663: DEBUG/MainProcess] w1@bogon joined the party

所以multi模式的特点就是新增加了Cluster和Node的概念,用来管理所有的worker,主要代码如下:

@splash
@using_cluster
def start(self, cluster):
    self.note('> Starting nodes...')
    return int(any(cluster.start()))

def start(self):
    return [self.start_node(node) for node in self]

def start_node(self, node):
    maybe_call(self.on_node_start, node)
    retcode = node.start(
            self.env,
            on_spawn=self.on_child_spawn,
            on_signalled=self.on_child_signalled,
            on_failure=self.on_child_failure,
        )
    maybe_call(self.on_node_status, node, retcode)
    return retcode

Node直接同步是在Gossip的step中:

class Gossip(bootsteps.ConsumerStep):
    ...
    def on_node_join(self, worker):
        debug('%s joined the party', worker.hostname)
        self._call_handlers(self.on.node_join, worker)

完成测试后,可以使用命令 celery multi stop w1 w2 关闭node

worker接收任务流程

worker接收任务并执行的日志如下:

[2021-11-24 21:33:50,535: INFO/MainProcess] Received task: myapp.add[e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2]
[2021-11-24 21:33:50,535: DEBUG/MainProcess] TaskPool: Apply <function _trace_task_ret at 0x7fe6086ac280> (args:('myapp.add', 'e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2', {'lang': 'py', 'task': 'myapp.add', 'id': 'e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2', 'shadow': None, 'eta': None, 'expires': None, 'group': None, 'group_index': None, 'retries': 0, 'timelimit': [None, None], 'root_id': 'e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2', 'parent_id': None, 'argsrepr': '(16, 16)', 'kwargsrepr': '{}', 'origin': 'gen83110@192.168.5.28', 'reply_to': '63862dbb-9d82-3bdd-b7fb-03580941362a', 'correlation_id': 'e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2', 'hostname': 'celery@192.168.5.28', 'delivery_info': {'exchange': '', 'routing_key': 'celery', 'priority': 0, 'redelivered': None}, 'args': [16, 16], 'kwargs': {}}, b'[[16, 16], {}, {"callbacks": null, "errbacks": null, "chain": null, "chord": null}]', 'application/json', 'utf-8') kwargs:{})
[2021-11-24 21:33:50,536: DEBUG/MainProcess] Task accepted: myapp.add[e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2] pid:83086
[2021-11-24 21:33:50,537: INFO/ForkPoolWorker-8] Task myapp.add[e9bb4aa0-8280-443f-a5ed-3deb0a0b99c2] succeeded in 0.000271957000000711s: 32

从日志信息可以看到,主进程MainProcess收到task执行的请求,然后从任务池中获取到任务,然后调度任务到一个子进程ForkPoolWorker-9中执行。

任务的接收是在默认的策略函数中开始:

# celery/worker/strategy.py

def default(task, app, consumer,
            info=logger.info, error=logger.error, task_reserved=task_reserved,
            to_system_tz=timezone.to_system, bytes=bytes,
            proto1_to_proto2=proto1_to_proto2):
    """Default task execution strategy.

    Note:
        Strategies are here as an optimization, so sadly
        it's not very easy to override.
    """
    ...
    info('Received task: %s', req)
    ...

任务池是由并发模型提供:

# celery/concurrency/base.py

def apply_async(self, target, args=None, kwargs=None, **options):
    """Equivalent of the :func:`apply` built-in function.

    Callbacks should optimally return as soon as possible since
    otherwise the thread which handles the result will get blocked.
    """
    kwargs = {} if not kwargs else kwargs
    args = [] if not args else args
    if self._does_debug:
        logger.debug('TaskPool: Apply %s (args:%s kwargs:%s)',
                     target, truncate(safe_repr(args), 1024),
                     truncate(safe_repr(kwargs), 1024))

    return self.on_apply(target, args, kwargs,
                         waitforslot=self.putlocks,
                         callbacks_propagate=self.callbacks_propagate,
                         **options)

小结

我们通过对worker,beat和multi三种启动模式的日志跟踪分析,对celery的启动流程和模块功能有更进一步的了解。三个模式都需要创建app,所以启动时候通过参数-A myapp参数,由app创建/查找各种task。不同的地方首先是beat和worker/multi不同,beat实际上就是一个生产者,通过配置定时的产生任务,然后发送给worker/multi具体执行。其次不同的是worker和multi的运作方式,multi以服务方式运行,并且可以跨机器。在worker模式下,本机创建多个工作进程,是一个多进程模型。multi则是多个机器Node形成一个Cluster集群,任务在集群内部进行调度。celery的分布式模型大概可以如下图:

同时通过运行日志分析,我们可以知道celery的启动过程通过不同的Blueprint的不同Step过程实现;定时功能主要在beat和schedule模块实现;而分布式功能主要在concurrency模块,这样对各个模块的主体功能分工会有更清晰的认知。

本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/09j_Yfz8DVA1kcr2qXt1FA

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237229次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8063次阅读
 目录