为什么ElasticSearch比MySQL更适合复杂条件搜索

发表于 3年以前  | 总阅读数:575 次

熟悉 MySQL 的同学一定都知道,MySQL 对于复杂条件查询的支持并不好。MySQL 最多使用一个条件涉及的索引来过滤,然后剩余的条件只能在遍历行过程中进行内存过滤。

上述这种处理复杂条件查询的方式因为只能通过一个索引进行过滤,所以需要进行大量的 I/O 操作来读取行数据,并消耗 CPU 进行内存过滤,导致查询性能的下降。

而 ElasticSearch 因其特性,十分适合进行复杂条件查询,是业界主流的复杂条件查询场景解决方案,广泛应用于订单和日志查询等场景。

下面我们就一起来看一下,为什么 ElasticSearch 适合进行复杂条件查询。

ElasticSearch 简介

Elasticsearch 是开源的实时分布式搜索分析引擎,内部使用 Lucene 做索引与搜索。它提供"准实时搜索"能力,并且能动态集群规模,弹性扩容。

Elasticsearch 使用 Lucene 作为其全文搜索引擎,用于处理纯文本的数据,但 Lucene 只是一个库,提供建立索引、执行搜索等接口,但不包含分布式服务,这些正是 Elasticsearch 做的。

下面,我们来介绍一下 ElasticSearch 的相关概念。为了便于初学者理解,我们先将 ElasticSearch 中的概念和 MySQL 中的概念大致地进行对应。但是二者在具体细节上还是有很多差异的,大家深入了解 ElasticSearch 就会将二者区分清楚,不能强行对比等同

  • ElasticSearch 中的索引 Index 类似于 MySQL 中的数据库 Database;
  • ElasticSearch 中的类型 Type 类似于 MySQL 中的表 Table;需要注意,这个概念在 7.x 版本中被完全删除,而且概念上和 Table 也有较大差异;
  • ElasticSearch 中的文档 Document 类似于 MySQL 中的数据行 Row,每个文档由多个字段 Filed 组成,这个Filed 就类似于 MySQL 的 Column;
  • ElasticSearch 中的映射 Mapping 是对索引库中的索引字段及其数据类型进行定义,类似于关系型数据库中的表结构 Schema;
  • ElasticSearch 使用自己的领域语言 Query DSL 来进行增删改查,而 MySQL 使用 SQL 语言进行上诉操作。

ElasticSearch 还有一系列有关其分布式特性的概念,我们这里就暂不介绍了,等后续学习到其分布式特性时在进行介绍。

倒排索引

MySQL 有 B+ 树索引,而 ElasticSearch 则是倒排索引 (Inverted Index),它通过倒排索引来实现比 MySQL 更快的过滤和复杂条件的查询,此外,全文搜索功能也是依赖倒排索引才能实现。下面,我们就具体来看一下何为倒排索引。

倒排索引按照维基百科的描述,是存储文档内容到文档位置映射关系的数据库索引结构。不过只看定义,我是有点迷惑,这不是和 MySQL 的非主键索引类似嘛,为什么要叫它“倒排”呢?这个问题我目前也为搞清楚,可能要等到后续了解了其具体实现才能理解。

我们还是以书籍检索为例,假设有以下数据,每一行就是一个 Document,每个 Document 由 id、ISBN 号,作者名称和评分组成。

给上述数据按照 ISBN 和 Author 建立的倒排索引如下所示。倒排索引是每个字段分开建立的,相互独立。有两个专门的术语,分别是索引 Term 和倒排表 Posting List。字段的值就是 Term,比如 N0007,而 Term 对应的文档 ID 的列表就是 Posting List,对应图中红色的部分。

一般 Term 都是按照顺序排序的,比如 Author 名称就是按照字母序进行了排序,排序之后,当我们搜索某一个 Term 时,就不需要从头遍历,而是采用二分查找。一系列排序后的 Term 就组成了索引表 Term Dictionary。

但是 Term Dictionary 往往很大,无法完整放入内存,这是为了更快的查询,还需要再给它创建索引,也就是 Term Index 。

ElasticSearch 使用 Burst-Trie 结构来实现 Term Index,它是一种前缀树 Trie 的一种变种,它主要是将后缀进行了压缩,降低了Trie的高度,从而获取更好查询性能。

Term Index 并不需要像 MySQL 的索引一样,包含所有的 Term,而是包含的是这些 Term 的前缀。它就类似于字典的查询目录,可以进行快速定位到 Term Dictionary 的某一位置,然后再从这个位置向后查询。

综上, Alice,Alf,Arlan,Bob,Tom 等词的倒排索引如下所示。绿色部分是 Term Index,蓝色部分是 Term Dictionary,红色部分是 Posting List。

一般来说,Term Index 都是全部缓存在内存中,查询时,先通过其快速定位到 Term Dictionary 对应的大致范围,然后再进行磁盘读取查找对应的 Term,这样就大大减少了磁盘 I/O 的次数。

联合索引查询

了解了 ElasticSearch 的倒排索引后,我们再来看看其如何处理复杂的联合索引查询。比如上述书籍例子中,我们需要查询评分等于2.2并且作者名称叫 Tom 的书籍。

理论上,我们只需要分别按照 Score 和 Author 字段的倒排索引进行查询,获取响应的 Posting List,再将其做交集合并即可。

这里又要吐槽一下 MySQL,它是不支持这个合并操作的,它只能按照一个字段的索引进行查询,然后根据另外一个字段的条件做内存过滤。顺便说一下,MySQL 的 join 功能也弱爆了,感兴趣的同学可以了解一下。

而 ElasticSearch 则支持使用跳表 Skip List和 Bitset 的方式将数据集进行合并。

  • 使用 Skip List 结构,同时遍历 Score 和 Author 查询出来的 Posting List,利用其 Skip List 结构,相互跳跃对比,得出合集。
  • 使用 Bitset 结构,对 Score 和 Author 查询出来的 Posting List 的值计算出各自的 Bitset,然后进行 AND 操作。

跳表合并策略

ElasticSearch 在存储 Posting List 数据时,就保存了对应的多级跳表结构响应的数据,这也体现了其空间换时间的基本思想。

这里先介绍一下跳表的基本概念,它其实是一种可以进行二分查找的有序链表。跳表在原有的有序链表上面增加了多级索引,通过索引来实现快速查找。首先在最高级索引上查找最后一个小于当前查找元素的位置,然后再跳到次高级索引继续查找,直到跳到最底层为止,通过这种方式,加快了查询的速度。

比如,按照 Score 查出来的 Posting List 为 [2,3,4,5,7,9,10,11],按照 Author 查出来的结果为 [3,8,9,12,13],则二者的跳表结构如下图所示。

具体合并过程则是先选最短的 posting list,也就是 Author 的结果集,从其最小的一个 id 开始,将其作为当前最大值。然后依次剩余 posting list 中查找大于或等于该值的位置。

比如上述结果集中,先去 Score 结果集中查找 3,找到后,就表明 3是二者的合集元素之一;然后再重新开启一轮,选取 Author 结果集中 3 的下一个值 8 ,去 Score 结果集查询 8,发现了大于等于 8 的最小的值是 9 ,所以不可能有共同的值 8,然后再去 Author 结果集查找 9 ,发现其大于等于 9 的最小值是 12,所以再去 Score 结果集中查找大于等于 12的值,发现并不存在;最终得出二者的合集就只有 [3]。

在查询过程中,每个 posting list 都可以根据当前 id 通过 skip list 快速跳过不符合的 id 值,加速整个合并取交集的过程。

ElasticSearch 对于较长的 posting list 也会使用 Frame Of Reference 进行压缩编码,减少了磁盘占用,减少了索引尺寸。有关具体存储结构的实现我们后续再进行细聊。

Bitset 合并策略

ElasticSearch 除了使用 skipList 来进行数据磁盘读取时的合并操作外,还会将一些查询条件对应的结果集 posting list 进行内存缓存,也就是所谓的 Filter Cache,为了后续再次复用。

为了减少内存缓存所消耗的内存空间大小,ElasticSearch 没有使用单纯的数组和 bitset 来存储 posting list,而是使用要压缩效率更高的 Roaring Bitmap。

我们可以先来讲一下单纯数组或 bitset 数据结构为什么并不使用。比如如下一道较为常见的面试题目:

给定含有 40 亿个不重复的位于 [0, 2^32 - 1] 区间内的整数的集合,如何快速判定某个数是否在该集合内?

如果我们要使用 unsigned long 数组来存储它的话,也就需要消耗 40亿 * 32 位 = 160 Byte,大致是 16000 MB。

如果要使用位图 Bitset 来存储的话,即某个数位于原集合内,就将它对应的位图内的比特置为1,否则保持为0。这样只需要消耗 2 ^ 32 位 = 512 MB,这可只有原来的 3.2 % 左右

但是,Bitset 也有其缺陷,也就是稀疏存储的问题,比如上述集合并不是 40亿,而是只有2、3个,那么 Bitset 中只有少数几位是1,其他位都是 0,但是它仍然占用了 512 MB。

而 RoaringBitmap 就是为了解决稀疏存储的问题。下图就是 RoaringBitmap 的基本原理示意图。

首先,如上图所示,计算出32位无符号整数和 65536 的除数和余数。其含义表示,将32位无符号整数按照高16位分桶,即最多可能有2^16=65536个桶,术语惩治为 container。存储数据时,按照数据的高16位找到 container(找不到就会新建一个),再将低16位放入container中。也就是说,一个 RoaringBitmap 就是很多container的集合。

然后 container 内具体的存储结构要根据存入其内数据的基数来决定。

  • 基数小于 2 ^ 12 次方即 4096时,使用unsigned short类型的有序数组来存储,最大消耗空间就是 8 KB;
  • 基数大于 4096 时,则使用大小为 2 ^ 16 次方的普通 bitset 来存储,固定消耗 8 KB。当然,有些时候也会对 bitset 进行行程长度编码(RLE)压缩,进一步减少空间占用。

ElasticSearch 就是使用 Roaring Bitmap 来缓存不同条件查询出来的 posting list,然后再进行与操作计算出最终结果集。

后记

至此,我们也算了解了 ElasticSearch 为什么比 MySQL 更适合复杂条件查询,但是有好就有弊,因为为了查询做了这么多的准备工作,ElasticSearch 的插入速度就会慢于 MySQL,而且数据存入 ES 后并不是立马就能检索到。

相关文章

  • 《MySQL 的 join 功能弱爆了?》
  • 《MySQL 复杂 where 语句分析》

本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/AFwWeDcH74mJB_yLCl-qLw

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 目录