20 图 |6 千字|缓存实战(上篇)

发表于 3年以前  | 总阅读数:488 次

前言

先说个小事情,今天试了下做动图,就一张动图都花了我 1 个小时,还做得很难看。。在线求个做动图的好软件~

本文主要内容如下:

上一篇讲到如何做性能调优的方式:《48 张图 | 手摸手教你微服务的性能监控、压测和调优》,比如给表加索引、动静分离、减少不必要的日志打印。但有一个很强大的优化方式没有提到,那就是加缓存,比如查询小程序的广告位配置,因为没什么人会去频繁的改,将广告位配置丢到缓存里面再适合不过了。那我们就给开源 Spring Cloud 实战项目 PassJava 加下缓存来提升下性能。

我把后端前端小程序都上传到同一个仓库里面了,大家可以通过 Github码云访问。地址如下:

Github: https://github.com/Jackson0714/PassJava-Platform

码云:https://gitee.com/jayh2018/PassJava-Platform

配套教程:www.passjava.cn

在实战之前,我们先来看下使用缓存的原理和问题。

一、缓存

1.1 为什么要用缓存

20 年前常见的系统就是单机的,比如 ERP 系统,对性能要求不高,使用缓存的并不常见,但现如今,已经步入到互联网时代,高并发、高可用、高性能总是被提起,而缓存在这“三高”中立下汗马功劳

我们通过会将部分数据放入缓存中,来提高访问速度,然后数据库承担存储的工作。

那么哪些数据适合放入缓存中呢?

  • 即时性。例如查询最新的物流状态信息。
  • 数据一致性要求不高。例如门店信息,修改后,数据库中已经改了,5 分钟后缓存中才是最新的,但不影响功能使用。
  • 访问量大且更新频率不高。比如首页的广告信息,访问量,但是不会经常变化。

当我们想要查询数据时,使用缓存的流程如下:

读模式缓存使用流程

1.2 本地缓存

比如现在有一个需求:前端小程序需要查询题目的类型,而题目类型放在小程序的首页在,访问量是非常高的,但是又不是经常变化的数据,所以可以将题目类型数据放到缓存中。

最简单的使用缓存的方式是使用本地缓存,也就是在内存中缓存数据,可以用 HashMap、数组等数据结构来缓存数据。

1.2.1 不使用缓存

我们先来看下不使用缓存的情况:前端的请求先经过网关,然后请求到题目微服务,然后查询数据库,返回查询结果。

再来看下核心代码是怎么样的。

先自定义一个 Rest API 用来查询题目类型列表,数据是从数据库查询出来后直接返回给前端。

@RequestMapping("/list")
public R list(){
    // 从数据库中查询数据
    typeEntityList = ITypeService.list(); 
    return R.ok().put("typeEntityList", typeEntityList);
}

1.2.2 使用缓存

来看下使用缓存的情况:前端先经过网关,然后到题目微服务,先判断缓存中有没有数据,如果没有,则查询数据库再更新缓存,最后返回查询到的结果。

那我们现在创建一个 HashMap 来缓存题目的类型列表:

private Map<String, Object> cache = new HashMap<>();

先获取缓存的类型列表

List<TypeEntity> typeEntityListCache = (List<TypeEntity>) cache.get("typeEntityList");

如果缓存中没有,则先从数据库中获取。当然,第一次查询缓存时,肯定是没有这个数据的。

// 如果缓存中没有数据
if (typeEntityListCache == null) {
  System.out.println("The cache is empty");
  // 从数据库中查询数据
  List<TypeEntity> typeEntityList = ITypeService.list();
  // 将数据放入缓存中
  typeEntityListCache = typeEntityList;
  cache.put("typeEntityList", typeEntityList);
}
return R.ok().put("typeEntityList", typeEntityListCache);

我们用 Postman 工具来看下查询结果:

请求URL:https://github.com/Jackson0714/PassJava-Platform

返回了题目类型列表,共 14 条数据。

以后再次查询时,因为缓存中已经有该数据了,所以直接走缓存,不会再从数据库中查询数据了。

从上面的例子中我们可以知道本地缓存有哪些优点呢?

  • 减少和数据库的交互,降低因磁盘 I/O 引起的性能问题。
  • 避免数据库的死锁问题。
  • 加速相应速度。

当然,本地缓存也存在一些问题:

  • 占用本地内存资源。
  • 机器宕机重启后,缓存丢失。
  • 可能会存在数据库数据和缓存数据不一致的问题。
  • 同一台机器中的多个微服务缓存的数据不一致。

  • 集群环境下存在缓存的数据不一致的问题。

基于本地缓存的问题,我们引入了分布式缓存 Redis 来解决。

二、缓存 Redis

2.1 Docker 安装 Redis

首先需要安装 Redis,我是通过 Docker 来安装 Redis。另外我在 ubuntu 和 Mac M1 上都装过 docker 版的 Redis,大家可以参照这两篇来安装。

[《Ubuntu 上到 Docker 安装redis》]

[《M1 和 Docker 谈了个恋爱...》]

2.2 引入 Redis 组件

我用的是 passjava-question 微服务,所以是在 passjava-question 模块下的配置文件 pom.xml 中引入 redis 组件。

文件路径:/passjava-question/pom.xml

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

2.3 测试 Redis

我们可以写一个测试方法来测试引入的 redis 是否能存数据,以及能否查出存的数据。

我们都是使用 StringRedisTemplate 库来操作 Redis,所以可以自动装载下 StringRedisTemplate

@Autowired
StringRedisTemplate stringRedisTemplate;

然后在测试方法中,测试存储方法:ops.set(),以及 查询方法:ops.get()

@Test
public void TestStringRedisTemplate() {
    // 初始化 redis 组件
    ValueOperations<String, String> ops = stringRedisTemplate.opsForValue();
    // 存储数据
    ops.set("悟空", "悟空聊架构_" + UUID.randomUUID().toString());
    // 查询数据
    String wukong = ops.get("悟空");
    System.out.println(wukong);
}

set 方法的第一个参数是 key,比如示例中的 “悟空”。

get 方法的参数也是 key。

最后打印出了 redis 中 key = “悟空” 的缓存的值:

另外也可以通过客户端工具来查看,如下图所示:

我下载的是这个软件:Redis Desktop Manager windows,Mac M1 上正常使用。下载地址:

http://www.pc6.com/softview/SoftView_450180.html

2.4 用 Redis 改造业务逻辑

用 redis 替换 hashmap 也不难,把用到 hashmap 的地方都用 redis 改下。另外需要注意的是:

从数据库中查询到的数据先要序列化成 JSON 字符串后再存入到 Redis 中,从 Redis 中查询数据时,也需要将 JSON 字符串反序列化为对象实例。

public List<TypeEntity> getTypeEntityList() {
  // 1.初始化 redis 组件
  ValueOperations<String, String> ops = stringRedisTemplate.opsForValue();
  // 2.从缓存中查询数据
  String typeEntityListCache = ops.get("typeEntityList");
  // 3.如果缓存中没有数据
  if (StringUtils.isEmpty(typeEntityListCache)) {
    System.out.println("The cache is empty");
    // 4.从数据库中查询数据
    List<TypeEntity> typeEntityListFromDb = this.list();
    // 5.将从数据库中查询出的数据序列化 JSON 字符串
    typeEntityListCache = JSON.toJSONString(typeEntityListFromDb);
    // 6.将序列化后的数据存入缓存中
    ops.set("typeEntityList", typeEntityListCache);
    return typeEntityListFromDb;
  }
  // 7.如果缓存中有数据,则从缓存中拿出来,并反序列化为实例对象
  List<TypeEntity> typeEntityList = JSON.parseObject(typeEntityListCache, new TypeReference<List<TypeEntity>>(){});
  return typeEntityList;
}

整个流程如下:

  • 1.初始化 redis 组件。
  • 2.从缓存中查询数据。
  • 3.如果缓存中没有数据,执行步骤 4、5、6。
  • 4.从数据库中查询数据。
  • 5.将从数据库中查询出的数据转化为 JSON 字符串。
  • 6.将序列化后的数据存入缓存中,并返回数据库中查询到的数据。
  • 7.如果缓存中有数据,则从缓存中拿出来,并反序列化为实例对象。

2.5 测试业务逻辑

我们还是用 postman 工具进行测试:

通过多次测试,第一次请求会稍微慢点,后面几次速度非常快。说明使用缓存后性能有提升。

另外我们用 Redis 客户端看下结果:

Redis key = typeEntityList,Redis value 是一个 JSON 字符串,里面的内容是题目分类列表。

三、缓存穿透、雪崩、击穿

高并发下使用缓存会带来的几个问题:缓存穿透、雪崩、击穿。

3.1 缓存穿透

3.1.1 缓存穿透的概念

缓存穿透指一个一定不存在的数据,由于缓存未命中这条数据,就会去查询数据库,数据库也没有这条数据,所以返回结果是 null。如果每次查询都走数据库,则缓存就失去了意义,就像穿透了缓存一样。

3.1.2 带来的风险

利用不存在的数据进行攻击,数据库压力增大,最终导致系统崩溃。

3.1.3 解决方案

对结果 null 进行缓存,并加入短暂的过期时间。

3.2 缓存雪崩

3.2.1 缓存雪崩的概念

缓存雪崩是指我们缓存多条数据时,采用了相同的过期时间,比如 00:00:00 过期,如果这个时刻缓存同时失效,而有大量请求进来了,因未缓存数据,所以都去查询数据库了,数据库压力增大,最终就会导致雪崩。

3.2.2 带来的风险

尝试找到大量 key 同时过期的时间,在某时刻进行大量攻击,数据库压力增大,最终导致系统崩溃。

3.2.3 解决方案

在原有的实效时间基础上增加一个碎挤汁,比如 1-5 分钟随机,降低缓存的过期时间的重复率,避免发生缓存集体实效。

3.3 缓存击穿

3.3.1 缓存击穿的概念

某个 key 设置了过期时间,但在正好失效的时候,有大量请求进来了,导致请求都到数据库查询了。

3.3.2 解决方案

大量并发时,只让一个请求可以获取到查询数据库的锁,其他请求需要等待,查到以后释放锁,其他请求获取到锁后,先查缓存,缓存中有数据,就不用查数据库。

四、加锁解决缓存击穿

怎么处理缓存穿透、雪崩、击穿的问题呢?

  • 对空结果进行缓存,用来解决缓存穿透问题。
  • 设置过期时间,且加上随机值进行过期偏移,用来解决缓存雪崩问题。
  • 加锁,解决缓存击穿问题。另外需要注意,加锁对性能会带来影响。

这里我们来看下用代码演示如何解决缓存击穿问题。

我们需要用 synchronized 来进行加锁。当然这是本地锁的方式,分布式锁我们会在下篇讲到。

public List<TypeEntity> getTypeEntityListByLock() {
  synchronized (this) {
    // 1.从缓存中查询数据
    String typeEntityListCache = stringRedisTemplate.opsForValue().get("typeEntityList");
    if (!StringUtils.isEmpty(typeEntityListCache)) {
      // 2.如果缓存中有数据,则从缓存中拿出来,并反序列化为实例对象,并返回结果
      List<TypeEntity> typeEntityList = JSON.parseObject(typeEntityListCache, new TypeReference<List<TypeEntity>>(){});
      return typeEntityList;
    }
    // 3.如果缓存中没有数据,从数据库中查询数据
    System.out.println("The cache is empty");
    List<TypeEntity> typeEntityListFromDb = this.list();
    // 4.将从数据库中查询出的数据序列化 JSON 字符串
    typeEntityListCache = JSON.toJSONString(typeEntityListFromDb);
    // 5.将序列化后的数据存入缓存中,并返回数据库查询结果
    stringRedisTemplate.opsForValue().set("typeEntityList", typeEntityListCache, 1, TimeUnit.DAYS);
    return typeEntityListFromDb;
  }
}
  • 1.从缓存中查询数据。
  • 2.如果缓存中有数据,则从缓存中拿出来,并反序列化为实例对象,并返回结果。
  • 3.如果缓存中没有数据,从数据库中查询数据。
  • 4.将从数据库中查询出的数据序列化 JSON 字符串。
  • 5.将序列化后的数据存入缓存中,并返回数据库查询结果。

五、本地锁的问题

本地锁只能锁定当前服务的线程,如下图所示,部署了多个题目微服务,每个微服务用本地锁进行加锁。

本地锁在一般情况下没什么问题,但是在某些情况下就会出问题:

比如在高并发情况下用来锁库存就有问题了:

  • 1.比如当前总库存为 100,被缓存在 Redis 中。
  • 2.库存微服务 A 用本地锁扣减库存 1 之后,总库存为 99。
  • 3.库存微服务 B 用本地锁扣减库存 1 之后,总库存为 99。
  • 4.那库存扣减了 2 次后,还是 99,就超卖了 1 个

那如何解决本地加锁的问题呢?

缓存实战(中篇):实战分布式锁。我们下篇见!

本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/qtp4SVGdIamLdcO_Z7Em8Q

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237231次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8065次阅读
 目录