使用uuid作为数据库主键,被技术总监怼了!

发表于 3年以前  | 总阅读数:490 次

一、前言

在日常开发中,数据库中主键id的生成方案,主要有三种

  • 数据库自增ID
  • 采用随机数生成不重复的ID
  • 采用jdk提供的uuid

对于这三种方案,我发现在数据量少的情况下,没有特别的差异,但是当单表的数据量达到百万级以上时候,他们的性能有着显著的区别,光说理论不行,还得看实际程序测试,今天就带着大家一探究竟!

二、程序实例

首先,我们在本地数据库中创建三张单表tb_uuid_1tb_uuid_2tb_uuid_3,同时设置tb_uuid_1表的主键为自增长模式,脚本如下:

CREATE TABLE `tb_uuid_1` (
  `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
  `name` varchar(20) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci COMMENT='主键ID自增长';
CREATE TABLE `tb_uuid_2` (
  `id` bigint(20) unsigned NOT NULL,
  `name` varchar(20) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci COMMENT='主键ID随机数生成';
CREATE TABLE `tb_uuid_3` (
  `id` varchar(50)  NOT NULL,
  `name` varchar(20) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci COMMENT='主键采用uuid生成';

下面,我们采用Springboot + mybatis来实现插入测试。

2.1、数据库自增

以数据库自增为例,首先编写好各种实体、数据持久层操作,方便后续进行测试

/**
 * 表实体
 */
public class UUID1 implements Serializable {

    private Long id;

    private String name;

  //省略set、get
}
/**
 * 数据持久层操作
 */
public interface UUID1Mapper {

    /**
     * 自增长插入
     * @param uuid1
     */
    @Insert("INSERT INTO tb_uuid_1(name) VALUES(#{name})")
    void insert(UUID1 uuid1);
}
/**
 * 自增ID,单元测试
 */
@Test
public void testInsert1(){
    long start = System.currentTimeMillis();
    for (int i = 0; i < 1000000; i++) {
        uuid1Mapper.insert(new UUID1().setName("张三"));
    }
    long end = System.currentTimeMillis();
    System.out.println("花费时间:" +  (end - start));
}

2.2、采用随机数生成ID

这里,我们采用twitter的雪花算法来实现随机数ID的生成,工具类如下:

public class SnowflakeIdWorker {

    private static SnowflakeIdWorker instance = new SnowflakeIdWorker(0,0);

    /**
     * 开始时间截 (2015-01-01)
     */
    private final long twepoch = 1420041600000L;
    /**
     * 机器id所占的位数
     */
    private final long workerIdBits = 5L;
    /**
     * 数据标识id所占的位数
     */
    private final long datacenterIdBits = 5L;
    /**
     * 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数)
     */
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
    /**
     * 支持的最大数据标识id,结果是31
     */
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    /**
     * 序列在id中占的位数
     */
    private final long sequenceBits = 12L;
    /**
     * 机器ID向左移12位
     */
    private final long workerIdShift = sequenceBits;
    /**
     * 数据标识id向左移17位(12+5)
     */
    private final long datacenterIdShift = sequenceBits + workerIdBits;
    /**
     * 时间截向左移22位(5+5+12)
     */
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    /**
     * 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)
     */
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);
    /**
     * 工作机器ID(0~31)
     */
    private long workerId;
    /**
     * 数据中心ID(0~31)
     */
    private long datacenterId;
    /**
     * 毫秒内序列(0~4095)
     */
    private long sequence = 0L;
    /**
     * 上次生成ID的时间截
     */
    private long lastTimestamp = -1L;
    /**
     * 构造函数
     * @param workerId     工作ID (0~31)
     * @param datacenterId 数据中心ID (0~31)
     */
    public SnowflakeIdWorker(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }
    /**
     * 获得下一个ID (该方法是线程安全的)
     * @return SnowflakeId
     */
    public synchronized long nextId() {
        long timestamp = timeGen();
        // 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(
                    String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
        // 如果是同一时间生成的,则进行毫秒内序列
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            // 毫秒内序列溢出
            if (sequence == 0) {
                //阻塞到下一个毫秒,获得新的时间戳
                timestamp = tilNextMillis(lastTimestamp);
            }
        }
        // 时间戳改变,毫秒内序列重置
        else {
            sequence = 0L;
        }
        // 上次生成ID的时间截
        lastTimestamp = timestamp;
        // 移位并通过或运算拼到一起组成64位的ID
        return ((timestamp - twepoch) << timestampLeftShift) //
                | (datacenterId << datacenterIdShift) //
                | (workerId << workerIdShift) //
                | sequence;
    }
    /**
     * 阻塞到下一个毫秒,直到获得新的时间戳
     * @param lastTimestamp 上次生成ID的时间截
     * @return 当前时间戳
     */
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }
    /**
     * 返回以毫秒为单位的当前时间
     * @return 当前时间(毫秒)
     */
    protected long timeGen() {
        return System.currentTimeMillis();
    }

    public static SnowflakeIdWorker getInstance(){
        return instance;
    }


    public static void main(String[] args) throws InterruptedException {
        SnowflakeIdWorker idWorker = SnowflakeIdWorker.getInstance();
        for (int i = 0; i < 10; i++) {
            long id = idWorker.nextId();
            Thread.sleep(1);
            System.out.println(id);
        }
    }
}

其他的操作,与上面类似。

2.3、uuid

同样的,uuid的生成,我们事先也可以将工具类编写好:

public class UUIDGenerator {

    /**
     * 获取uuid
     * @return
     */
    public static String getUUID(){
        return UUID.randomUUID().toString();
    }
}

最后的单元测试,代码如下:

@RunWith(SpringRunner.class)
@SpringBootTest()
public class UUID1Test {

    private static final Integer MAX_COUNT = 1000000;

    @Autowired
    private UUID1Mapper uuid1Mapper;

    @Autowired
    private UUID2Mapper uuid2Mapper;

    @Autowired
    private UUID3Mapper uuid3Mapper;

    /**
     * 测试自增ID耗时
     */
    @Test
    public void testInsert1(){
        long start = System.currentTimeMillis();
        for (int i = 0; i < MAX_COUNT; i++) {
            uuid1Mapper.insert(new UUID1().setName("张三"));
        }
        long end = System.currentTimeMillis();
        System.out.println("自增ID,花费时间:" +  (end - start));
    }

    /**
     * 测试采用雪花算法生产的随机数ID耗时
     */
    @Test
    public void testInsert2(){
        long start = System.currentTimeMillis();
        for (int i = 0; i < MAX_COUNT; i++) {
            long id = SnowflakeIdWorker.getInstance().nextId();
            uuid2Mapper.insert(new UUID2().setId(id).setName("张三"));
        }
        long end = System.currentTimeMillis();
        System.out.println("花费时间:" +  (end - start));
    }

    /**
     * 测试采用UUID生成的ID耗时
     */
    @Test
    public void testInsert3(){
        long start = System.currentTimeMillis();
        for (int i = 0; i < MAX_COUNT; i++) {
            String id = UUIDGenerator.getUUID();
            uuid3Mapper.insert(new UUID3().setId(id).setName("张三"));
        }
        long end = System.currentTimeMillis();
        System.out.println("花费时间:" +  (end - start));
    }
}

三、性能测试

程序环境搭建完成之后,啥也不说了,直接撸起袖子,将单元测试跑起来!

首先测试一下,插入100万数据的情况下,三者直接的耗时结果如下:

在原有的数据量上,我们继续插入30万条数据,三者耗时结果如下:

可以看出在数据量 100W 左右的时候,uuid的插入效率垫底,随着插入的数据量增长,uuid 生成的ID插入呈直线下降!

时间占用量总体效率排名为:自增ID > 雪花算法生成的ID >> uuid生成的ID

在数据量较大的情况下,为什么uuid生成的ID远不如自增ID呢

关于这点,我们可以从 mysql 主键存储的内部结构来进行分析。

3.1、自增ID内部结构

自增的主键的值是顺序的,所以 Innodb 把每一条记录都存储在一条记录的后面。

当达到页面的最大填充因子时候(innodb默认的最大填充因子是页大小的15/16,会留出1/16的空间留作以后的修改),会进行如下操作:

  • 下一条记录就会写入新的页中,一旦数据按照这种顺序的方式加载,主键页就会近乎于顺序的记录填满,提升了页面的最大填充率,不会有页的浪费
  • 新插入的行一定会在原有的最大数据行下一行,mysql定位和寻址很快,不会为计算新行的位置而做出额外的消耗

3.2、使用uuid的索引内部结构

uuid相对顺序的自增id来说是毫无规律可言的,新行的值不一定要比之前的主键的值要大,所以innodb无法做到总是把新行插入到索引的最后,而是需要为新行寻找新的合适的位置从而来分配新的空间。

这个过程需要做很多额外的操作,数据的毫无顺序会导致数据分布散乱,将会导致以下的问题:

  • 写入的目标页很可能已经刷新到磁盘上并且从缓存上移除,或者还没有被加载到缓存中,innodb在插入之前不得不先找到并从磁盘读取目标页到内存中,这将导致大量的随机IO
  • 因为写入是乱序的,innodb不得不频繁的做页分裂操作,以便为新的行分配空间,页分裂导致移动大量的数据,一次插入最少需要修改三个页以上
  • 由于频繁的页分裂,页会变得稀疏并被不规则的填充,最终会导致数据会有碎片

在把值载入到聚簇索引(innodb默认的索引类型)以后,有时候会需要做一次OPTIMEIZE TABLE来重建表并优化页的填充,这将又需要一定的时间消耗。

因此,在选择主键ID生成方案的时候,尽可能别采用uuid的方式来生成主键ID,随着数据量越大,插入性能会越低!

四、总结

在实际使用过程中,推荐使用主键自增ID和雪花算法生成的随机ID。

但是使用自增ID也有缺点:

  1. 别人一旦爬取你的数据库,就可以根据数据库的自增id获取到你的业务增长信息,很容易进行数据窃取。
  2. 其次,对于高并发的负载,innodb在按主键进行插入的时候会造成明显的锁争用,主键的上界会成为争抢的热点,因为所有的插入都发生在这里,并发插入会导致间隙锁竞争。

总结起来,如果业务量小,推荐采用自增ID,如果业务量大,推荐采用雪花算法生成的随机ID。

本篇文章主要从实际程序实例出发,讨论了三种主键ID生成方案的性能差异, 鉴于笔者才疏学浅,可能也有理解不到位的地方,欢迎网友们批评指出!

五、参考

1、[方志明 - 使用雪花id或uuid作为Mysql主键,被老板怼了一顿!]


本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/WYjQn83HHsBb2VzUUP8q4A

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 目录