10问10答:你真的了解线程池吗?

发表于 3年以前  | 总阅读数:327 次

《Java开发手册》中强调,线程资源必须通过线程池提供,而创建线程池必须使用ThreadPoolExecutor。手册主要强调利用线程池避免两个问题,一是线程过渡切换,二是避免请求过多时造成OOM。但是如果参数配置错误,还是会引发上面的两个问题。所以本节我们主要是讨论ThreadPoolExecutor的一些技术细节,并且给出几个常用的最佳实践建议。

我在查找资料的过程中,发现有些问题存在争议。后面发现,一部分原因是因为不同JDK版本的现实是有差异的。因此,下面的分析是基于当下最常用的版本JDK1.8,并且对于存在争议的问题,我们分析源码,源码才是最准确的。 1 corePoolSize=0会怎么样 这是一个争议点。我发现大部分博文,不论是国内的还是国外的,都是这样回答这个问题的:

  • 提交任务后,先判断当前池中线程数是否小于corePoolSize,如果小于,则创建新线程执行这个任务。

  • 否则,判断等待队列是否已满,如果没有满,则添加到等待队列。

  • 否则,判断当前池中线程数是否大于maximumPoolSize,如果大于则拒绝。

  • 否则,创建一个新的线程执行这个任务。

按照上面的描述,如果corePoolSize=0,则会判断等待队列的容量,如果还有容量,则排队,并且不会创建新的线程。 —— 但其实,这是老版本的实现方式,从1.6之后,实现方式就变了。我们直接看execute的源码(submit也依赖它),我备注出了关键一行:

int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            // 注意这一行代码,添加到等待队列成功后,判断当前池内线程数是否为0,如果是则创建一个firstTask为null的worker,这个worker会从等待队列中获取任务并执行。
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
  • 线程池提交任务后,首先判断当前池中线程数是否小于corePoolSize。

  • 如果小于则尝试创建新的线程执行该任务;否则尝试添加到等待队列。

  • 如果添加队列成功,判断当前池内线程数是否为0,如果是则创建一个firstTask为null的worker,这个worker会从等待队列中获取任务并执行。

  • 如果添加到等待队列失败,一般是队列已满,才会再尝试创建新的线程。

  • 但在创建之前需要与maximumPoolSize比较,如果小于则创建成功。

  • 否则执行拒绝策略。

上述问题需区分JDK版本。在1.6版本之后,如果corePoolSize=0,提交任务时如果线程池为空,则会立即创建一个线程来执行任务(先排队再获取);如果提交任务的时候,线程池不为空,则先在等待队列中排队,只有队列满了才会创建新线程。 所以,优化在于,在队列没有满的这段时间内,会有一个线程在消费提交的任务;1.6之前的实现是,必须等队列满了之后,才开始消费。

2 线程池创建之后,会立即创建核心线程么 之前有人问过我这个问题,因为他发现应用中有些Bean创建了线程池,但是这个Bean一般情况下用不到,所以咨询我是否需要把这个线程池注释掉,以减少应用运行时的线程数(该应用运行时线程过多。)

不会。从上面的源码可以看出,在刚刚创建ThreadPoolExecutor的时候,线程并不会立即启动,而是要等到有任务提交时才会启动,除非调用了prestartCoreThread/prestartAllCoreThreads事先启动核心线程。

  • prestartCoreThread:Starts a core thread, causing it to idly wait for work. This overrides the default policy of starting core threads only when new tasks are executed.

  • prestartAllCoreThreads:Starts all core threads.

3 核心线程永远不会销毁么 这个问题有点tricky。首先我们要明确一下概念,虽然在JavaDoc中也使用了“core/non-core threads”这样的描述,但其实这是一个动态的概念,JDK并没有给一部分线程打上“core”的标记,做什么特殊化的处理。这个问题我认为想要探讨的是闲置线程终结策略的问题。

在JDK1.6之前,线程池会尽量保持corePoolSize个核心线程,即使这些线程闲置了很长时间。这一点曾被开发者诟病,所以从JDK1.6开始,提供了方法allowsCoreThreadTimeOut,如果传参为true,则允许闲置的核心线程被终止。

请注意这种策略和corePoolSize=0的区别。我总结的区别是:

  • corePoolSize=0:在一般情况下只使用一个线程消费任务,只有当并发请求特别多、等待队列都满了之后,才开始用多线程。

  • allowsCoreThreadTimeOut=true && corePoolSize>1:在一般情况下就开始使用多线程(corePoolSize个),当并发请求特别多,等待队列都满了之后,继续加大线程数。但是当请求没有的时候,允许核心线程也终止。

所以corePoolSize=0的效果,基本等同于allowsCoreThreadTimeOut=true && corePoolSize=1,但实现细节其实不同。 在JDK1.6之后,如果allowsCoreThreadTimeOut=true,核心线程也可以被终止。

4 如何保证线程不被销毁 首先我们要明确一下线程池模型。线程池有个内部类Worker,它实现了Runnable接口,首先,它自己要run起来。然后它会在合适的时候获取我们提交的Runnable任务,然后调用任务的run()接口。一个Worker不终止的话可以不断执行任务。

我们前面说的“线程池中的线程”,其实就是Worker;等待队列中的元素,是我们提交的Runnable任务。

每一个Worker在创建出来的时候,会调用它本身的run()方法,实现是runWorker(this),这个实现的核心是一个while循环,这个循环不结束,Worker线程就不会终止,就是这个基本逻辑。

  • 在这个while条件中,有个getTask()方法是核心中的核心,它所做的事情就是从等待队列中取出任务来执行:

  • 如果没有达到corePoolSize,则创建的Worker在执行完它承接的任务后,会用workQueue.take()取任务、注意,这个接口是阻塞接口,如果取不到任务,Worker线程一直阻塞。

  • 如果超过了corePoolSize,或者allowCoreThreadTimeOut,一个Worker在空闲了之后,会用workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS)取任务。注意,这个接口只阻塞等待keepAliveTime时间,超过这个时间返回null,则Worker的while循环执行结束,则被终止了。

 final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            // 看这里,核心逻辑在这里
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }
private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                // 注意,核心中的核心在这里
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

实现方式非常巧妙,核心线程(Worker)即使一直空闲也不终止,是通过workQueue.take()实现的,它会一直阻塞到从等待队列中取到新的任务。非核心线程空闲指定时间后终止是通过workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS)实现的,一个空闲的Worker只等待keepAliveTime,如果还没有取到任务则循环终止,线程也就运行结束了。

引申思考 Worker本身就是个线程,它再调用我们传入的Runnable.run(),会启动一个子线程么?如果你还没有答案,再回想一下Runnable和Thread的关系。

5 空闲线程过多会有什么问题 笼统地回答是会占用内存,我们分析一下占用了哪些内存。首先,比较普通的一部分,一个线程的内存模型:

  • 虚拟机栈
  • 本地方法栈
  • 程序计数器

我想额外强调是下面这几个内存占用,需要小心:

  • ThreadLocal:业务代码是否使用了ThreadLocal?就算没有,Spring框架中也大量使用了ThreadLocal,你所在公司的框架可能也是一样。

  • 局部变量:线程处于阻塞状态,肯定还有栈帧没有出栈,栈帧中有局部变量表,凡是被局部变量表引用的内存都不能回收。所以如果这个线程创建了比较大的局部变量,那么这一部分内存无法GC。

  • TLAB机制:如果你的应用线程数处于高位,那么新的线程初始化可能因为Eden没有足够的空间分配TLAB而触发YoungGC。

  • 线程池保持空闲的核心线程是它的默认配置,一般来讲是没有问题的,因为它占用的内存一般不大。怕的就是业务代码中使用ThreadLocal缓存的数据过大又不清理。

  • 如果你的应用线程数处于高位,那么需要观察一下YoungGC的情况,估算一下Eden大小是否足够。如果不够的话,可能要谨慎地创建新线程,并且让空闲的线程终止;必要的时候,可能需要对JVM进行调参。

6 keepAliveTime=0会怎么样 这也是个争议点。有的博文说等于0表示空闲线程永远不会终止,有的说表示执行完立刻终止。还有的说等于-1表示空闲线程永远不会终止。其实稍微看一下源码知道了,这里我直接抛出答案。

在JDK1.8中,keepAliveTime=0表示非核心线程执行完立刻终止。

默认情况下,keepAliveTime小于0,初始化的时候才会报错;但如果allowsCoreThreadTimeOut,keepAliveTime必须大于0,不然初始化报错。

7 怎么进行异常处理 很多代码的写法,我们都习惯按照常见范式去编写,而没有去思考为什么。比如:

  • 如果我们使用execute()提交任务,我们一般要在Runable任务的代码加上try-catch进行异常处理。

  • 如果我们使用submit()提交任务,我们一般要在主线程中,对Future.get()进行try-catch进行异常处理。

—— 但是在上面,我提到过,submit()底层实现依赖execute(),两者应该统一呀,为什么有差异呢?下面再扒一扒submit()的源码,它的实现蛮有意思。

首先,ThreadPoolExecutor中没有submit的代码,而是在它的父类AbstractExecutorService中,有三个submit的重载方法,代码非常简单,关键代码就两行:

 public Future<?> submit(Runnable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<Void> ftask = newTaskFor(task, null);
        execute(ftask);
        return ftask;
    }
    public <T> Future<T> submit(Runnable task, T result) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task, result);
        execute(ftask);
        return ftask;
    }
    public <T> Future<T> submit(Callable<T> task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task);
        execute(ftask);
        return ftask;
    }

正是因为这三个重载方法,都调用了execute,所以我才说submit底层依赖execute。通过查看这里execute的实现,我们不难发现,它就是ThreadPoolExecutor中的实现,所以,造成submit和execute的差异化的代码,不在这。那么造成差异的一定在newTaskFor方法中。这个方法也就new了一个FutureTask而已,FutureTask实现RunnableFuture接口,RunnableFuture接口继承Runnable接口和Future接口。而Callable只是FutureTask的一个成员变量。

所以讲到这里,就有另一个Java基础知识点:Callable和Future的关系。我们一般用Callable编写任务代码,Future是异步返回对象,通过它的get方法,阻塞式地获取结果。FutureTask的核心代码就是实现了Future接口,也就是get方法的实现:

   public V get() throws InterruptedException, ExecutionException {
        int s = state;
        if (s <= COMPLETING)
            // 核心代码
            s = awaitDone(false, 0L);
        return report(s);
    }

    private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        WaitNode q = null;
        boolean queued = false;
        // 死循环
        for (;;) {
            if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }

            int s = state;
            // 只有任务的状态是’已完成‘,才会跳出死循环
            if (s > COMPLETING) {
                if (q != null)
                    q.thread = null;
                return s;
            }
            else if (s == COMPLETING) // cannot time out yet
                Thread.yield();
            else if (q == null)
                q = new WaitNode();
            else if (!queued)
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q);
            else if (timed) {
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) {
                    removeWaiter(q);
                    return state;
                }
                LockSupport.parkNanos(this, nanos);
            }
            else
                LockSupport.park(this);
        }
    }

get的核心实现是有个awaitDone方法,这是一个死循环,只有任务的状态是“已完成”,才会跳出死循环;否则会依赖UNSAFE包下的LockSupport.park原语进行阻塞,等待LockSupport.unpark信号量。而这个信号量只有当运行结束获得结果、或者出现异常的情况下,才会发出来。分别对应方法set和setException。这就是异步执行、阻塞获取的原理,扯得有点远了。

回到最初我们的疑问,为什么submit之后,通过get方法可以获取到异常?原因是FutureTask有一个Object类型的outcome成员变量,用来记录执行结果。这个结果可以是传入的泛型,也可以是Throwable异常:

public void run() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return;
        try {
            Callable<V> c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    setException(ex);
                }
                if (ran)
                    set(result);
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }

  // get方法中依赖的,报告执行结果
    private V report(int s) throws ExecutionException {
        Object x = outcome;
        if (s == NORMAL)
            return (V)x;
        if (s >= CANCELLED)
            throw new CancellationException();
        throw new ExecutionException((Throwable)x);
    }

FutureTask的另一个巧妙的地方就是借用RunnableAdapter内部类,将submit的Runnable封装成Callable。所以就算你submit的是Runnable,一样可以用get获取到异常。

  • 不论是用execute还是submit,都可以自己在业务代码上加try-catch进行异常处理。我一般喜欢使用这种方式,因为我喜欢对不同业务场景的异常进行差异化处理,至少打不一样的日志吧。

  • 如果是execute,还可以自定义线程池,继承ThreadPoolExecutor并复写其afterExecute(Runnable r, Throwable t)方法。

  • 或者实现Thread.UncaughtExceptionHandler接口,实现void uncaughtException(Thread t, Throwable e);方法,并将该handler传递给线程池的ThreadFactory。

  • 但是注意,afterExecute和UncaughtExceptionHandler都不适用submit。因为通过上面的FutureTask.run()不难发现,它自己对Throwable进行了try-catch,封装到了outcome属性,所以底层方法execute的Worker是拿不到异常信息的。

8 线程池需不需要关闭

一般来讲,线程池的生命周期跟随服务的生命周期。如果一个服务(Service)停止服务了,那么需要调用shutdown方法进行关闭。所以ExecutorService.shutdown在Java以及一些中间件的源码中,是封装在Service的shutdown方法内的。 如果是Server端不重启就不停止提供服务,我认为是不需要特殊处理的。

9 shutdown和shutdownNow的区别

  • shutdown => 平缓关闭,等待所有已添加到线程池中的任务执行完再关闭。

  • shutdownNow => 立刻关闭,停止正在执行的任务,并返回队列中未执行的任务。

本来想分析一下两者的源码的,但是发现本文的篇幅已经过长了,源码也贴了不少。感兴趣的朋友自己看一下即可。

10 Spring中有哪些和ThreadPoolExecutor类似的工具

SimpleAsyncTaskExecutor 每次请求新开线程,没有最大线程数设置.不是真的线程池,这个类不重用线程,每次调用都会创建一个新的线程。
SyncTaskExecutor 不是异步的线程。同步可以用SyncTaskExecutor,但这个可以说不算一个线程池,因为还在原线程执行。这个类没有实现异步调用,只是一个同步操作。
ConcurrentTaskExecutor Executor的适配类,不推荐使用。如果ThreadPoolTaskExecutor不满足要求时,才用考虑使用这个类。
SimpleThreadPoolTaskExecutor 监听Spring’s lifecycle callbacks,并且可以和Quartz的Component兼容.是Quartz的SimpleThreadPool的类。线程池同时被quartz和非quartz使用,才需要使用此类。

这里我想着重强调的就是SimpleAsyncTaskExecutor,Spring中使用的@Async注解,底层就是基于SimpleAsyncTaskExecutor去执行任务,只不过它不是线程池,而是每次都新开一个线程。

另外想要强调的是Executor接口。Java初学者容易想当然的以为Executor结尾的类就是一个线程池,而上面的都是反例。我们可以在JDK的execute方法上看到这个注释:

/**
* Executes the given command at some time in the future.  The command
* may execute in a new thread, in a pooled thread, or in the calling
* thread, at the discretion of the {@code Executor} implementation.
*/

所以,它的职责并不是提供一个线程池的接口,而是提供一个“将来执行命令”的接口。真正能代表线程池意义的,是ThreadPoolExecutor类,而不是Executor接口。

最佳实践总结

  • 【强制】使用ThreadPoolExecutor的构造函数声明线程池,避免使用Executors类的 newFixedThreadPool和newCachedThreadPool。

  • 【强制】 创建线程或线程池时请指定有意义的线程名称,方便出错时回溯。即threadFactory参数要构造好。

  • 【建议】建议不同类别的业务用不同的线程池。

  • 【建议】CPU密集型任务(N+1):这种任务消耗的主要是CPU资源,可以将线程数设置为N(CPU核心数)+1,比CPU核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。一旦任务暂停,CPU就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用CPU的空闲时间。

  • 【建议】I/O密集型任务(2N):这种任务应用起来,系统会用大部分的时间来处理I/O交互,而线程在处理I/O的时间段内不会占用CPU来处理,这时就可以将CPU交出给其它线程使用。因此在I/O密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是2N。

  • 【建议】workQueue不要使用无界队列,尽量使用有界队列。避免大量任务等待,造成OOM。

  • 【建议】如果是资源紧张的应用,使用allowsCoreThreadTimeOut可以提高资源利用率。

  • 【建议】虽然使用线程池有多种异常处理的方式,但在任务代码中,使用try-catch最通用,也能给不同任务的异常处理做精细化。

  • 【建议】对于资源紧张的应用,如果担心线程池资源使用不当,可以利用ThreadPoolExecutor的API实现简单的监控,然后进行分析和优化。

线程池初始化示例:

private static final ThreadPoolExecutor pool;

    static {
        ThreadFactory threadFactory = new ThreadFactoryBuilder().setNameFormat("po-detail-pool-%d").build();
        pool = new ThreadPoolExecutor(4, 8, 60L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<>(512),
            threadFactory, new ThreadPoolExecutor.AbortPolicy());
        pool.allowCoreThreadTimeOut(true);
    }
  • threadFactory:给出带业务语义的线程命名。

  • corePoolSize:快速启动4个线程处理该业务,是足够的。

  • maximumPoolSize:IO密集型业务,我的服务器是4C8G的,所以4*2=8。

  • keepAliveTime:服务器资源紧张,让空闲的线程快速释放。

  • pool.allowCoreThreadTimeOut(true):也是为了在可以的时候,让线程释放,释放资源。

  • workQueue:一个任务的执行时长在100~300ms,业务高峰期8个线程,按照10s超时(已经很高了)。10s钟,8个线程,可以处理10 * 1000ms / 200ms * 8 = 400个任务左右,往上再取一点,512已经很多了。

  • handler:极端情况下,一些任务只能丢弃,保护服务端。

本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/axWymUaYaARtvsYqvfyTtw

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237299次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8141次阅读
 目录