MySQL 8.0 Server层最新架构详解

发表于 3年以前  | 总阅读数:400 次

一 背景和架构

本文基于MySQL 8.0.25源码进行分析和总结。这里MySQL Server层指的是MySQL的优化器、执行器部分。我们对MySQL的理解还建立在5.6和5.7版本的理解之上,更多的是对比PostgreSQL或者传统数据库。然而从MySQL 8.0开始,持续每三个月的迭代和重构工作,使得MySQL Server层的整体架构有了质的飞越。下面来看下MySQL最新的架构。

我们可以看到最新的MySQL的分层架构和其他数据库并没有太大的区别,另外值得一提的是从图中可以看出MySQL现在更多的加强InnoDB、NDB集群和RAPID(HeatWave clusters)内存集群架构的演进。下面我们就看下具体细节,我们这次不随着官方的Feature实现和重构顺序进行理解,本文更偏向于从优化器、执行器的流程角度来演进。

二 MySQL 解析器Parser

首先从Parser开始,官方MySQL 8.0使用Bison进行了重写,生成Parser Tree,同时Parser Tree会contextualize生成MySQL抽象语法树(Abstract Syntax Tree)。

MySQL抽象语法树和其他数据库有些不同,是由比较让人拗口的SELECT_LEX_UNIT/SELECT_LEX类交替构成的,然而这两个结构在最新的版本中已经重命名成标准的SELECT_LEX -> Query_block和SELECT_LEX_UNIT -> Query_expression。Query_block是代表查询块,而Query_expression是包含多个查询块的查询表达式,包括UNION AND/OR的查询块(如SELECT * FROM t1 union SELECT * FROM t2)或者有多Level的ORDER BY/LIMIT (如SELECT * FROM t1 ORDER BY a LIMIT 10) ORDER BY b LIMIT 5。

例如,来看一个复杂的嵌套查询:

(SELECT *
   FROM ttt1)
UNION ALL
  (SELECT *
   FROM
     (SELECT *
      FROM ttt2) AS a,
     (SELECT *
      FROM ttt3
      UNION ALL SELECT *
      FROM ttt4) AS b)

在MySQL中就可以用下面方式表达:

经过解析和转换后的语法树仍然建立在Query_block和Query_expression的框架下,只不过有些LEVEL的query block被消除或者合并了,这里不再详细展开。

三 MySQL prepare/rewrite阶段

接下来我们要经过resolve和transformation过程Query_expression::prepare->Query_block::prepare,这个过程包括(按功能分而非完全按照执行顺序):

1 Setup and Fix

  • setup_tables:Set up table leaves in the query block based on list of tables.

  • resolve_placeholder_tables/merge_derived/setup_table_function/setup_materialized_derived:Resolve derived table, view or table function references in query block.

  • setup_natural_join_row_types:Compute and store the row types of the top-most NATURAL/USING joins.

  • setup_wild:Expand all '*' in list of expressions with the matching column references.

  • setup_base_ref_items:Set query_block's base_ref_items.

  • setup_fields:Check that all given fields exists and fill struct with current data.

  • setup_conds:Resolve WHERE condition and join conditions.

  • setup_group:Resolve and set up the GROUP BY list.

  • m_having_cond->fix_fields:Setup the HAVING clause.

  • resolve_rollup:Resolve items in SELECT list and ORDER BY list for rollup processing.

  • resolve_rollup_item:Resolve an item (and its tree) for rollup processing by replacing items matching grouped expressions with Item_rollup_group_items and updating properties (m_nullable, PROP_ROLLUP_FIELD). Also check any GROUPING function for incorrect column.

  • setup_order:Set up the ORDER BY clause.

  • resolve_limits:Resolve OFFSET and LIMIT clauses.

  • Window::setup_windows1:Set up windows after setup_order() and before setup_order_final().

  • setup_order_final:Do final setup of ORDER BY clause, after the query block is fully resolved.

  • setup_ftfuncs:Setup full-text functions after resolving HAVING.

  • resolve_rollup_wfs : Replace group by field references inside window functions with references in the presence of ROLLUP.

2 Transformation

  • remove_redundant_subquery_clause : Permanently remove redundant parts from the query if 1) This is a subquery 2) Not normalizing a view. Removal should take place when a query involving a view is optimized, not when the view is created.

  • remove_base_options:Remove SELECT_DISTINCT options from a query block if can skip distinct.

  • resolve_subquery : Resolve predicate involving subquery, perform early unconditional subquery transformations.

  • Convert subquery predicate into semi-join, or

  • Mark the subquery for execution using materialization, or

  • Perform IN->EXISTS transformation, or

  • Perform more/less ALL/ANY -> MIN/MAX rewrite

  • Substitute trivial scalar-context subquery with its value

  • transform_scalar_subqueries_to_join_with_derived:Transform eligible scalar subqueries to derived tables.

  • flatten_subqueries:Convert semi-join subquery predicates into semi-join join nests. Convert candidate subquery predicates into semi-join join nests. This transformation is performed once in query lifetime and is irreversible.

  • apply_local_transforms :

  • delete_unused_merged_columns : If query block contains one or more merged derived tables/views, walk through lists of columns in select lists and remove unused columns.

  • simplify_joins:Convert all outer joins to inner joins if possible

  • prune_partitions:Perform partition pruning for a given table and condition.

  • push_conditions_to_derived_tables:Pushing conditions down to derived tables must be done after validity checks of grouped queries done by apply_local_transforms();

  • Window::eliminate_unused_objects:Eliminate unused window definitions, redundant sorts etc.

这里,节省篇幅,我们只举例关注下和top_join_list相关的simple_joins这个函数的作用,对于Query_block中嵌套join的简化过程。

3 对比PostgreSQL

为了更清晰的理解标准数据库的做法,我们这里引用了PostgreSQL的这三个过程:

Parser

下图首先Parser把SQL语句生成parse tree。

testdb=# SELECT id, data FROM tbl_a WHERE id < 300 ORDER BY data;

Analyzer/Analyser

下图展示了PostgreSQL的analyzer/analyser如何将parse tree通过语义分析后生成query tree。

Rewriter

Rewriter会根据规则系统中的规则把query tree进行转换改写。

sampledb=# CREATE VIEW employees_list 
sampledb-#      AS SELECT e.id, e.name, d.name AS department 
sampledb-#            FROM employees AS e, departments AS d WHERE e.department_id = d.id;

下图的例子就是一个包含view的query tree如何展开成新的query tree。

sampledb=# SELECT * FROM employees_list;

四 MySQL Optimize和Planning阶段

接下来我们进入了逻辑计划生成物理计划的过程,本文还是注重于结构的解析,而不去介绍生成的细节,MySQL过去在8.0.22之前,主要依赖的结构就是JOIN和QEP_TAB。JOIN是与之对应的每个Query_block,而QEP_TAB对应的每个Query_block涉及到的具体“表”的顺序、方法和执行计划。然而在8.0.22之后,新的基于Hypergraph的优化器算法成功的抛弃了QEP_TAB结构来表达左深树的执行计划,而直接使用HyperNode/HyperEdge的图来表示执行计划。

举例可以看到数据结构表达的left deep tree和超图结构表达的bushy tree对应的不同计划展现:

| -> Inner hash join (no condition)  (cost=1.40 rows=1)
    -> Table scan on R4  (cost=0.35 rows=1)
    -> Hash
        -> Inner hash join (no condition)  (cost=1.05 rows=1)
            -> Table scan on R3  (cost=0.35 rows=1)
            -> Hash
                -> Inner hash join (no condition)  (cost=0.70 rows=1)
                    -> Table scan on R2  (cost=0.35 rows=1)
                    -> Hash
                        -> Table scan on R1  (cost=0.35 rows=1)

| -> Nested loop inner join  (cost=0.55..0.55 rows=0)
    -> Nested loop inner join  (cost=0.50..0.50 rows=0)
        -> Table scan on R4  (cost=0.25..0.25 rows=1)
        -> Filter: (R4.c1 = R3.c1)  (cost=0.35..0.35 rows=0)
            -> Table scan on R3  (cost=0.25..0.25 rows=1)
    -> Nested loop inner join  (cost=0.50..0.50 rows=0)
        -> Table scan on R2  (cost=0.25..0.25 rows=1)
        -> Filter: (R2.c1 = R1.c1)  (cost=0.35..0.35 rows=0)
            -> Table scan on R1  (cost=0.25..0.25 rows=1)

MySQL8.0.2x为了更好的兼容两种优化器,引入了新的类AccessPath,可以认为这是MySQL为了解耦执行器和不同优化器抽象出来的Plan Tree。

1 老优化器的入口

老优化器仍然走JOIN::optimize来把query block转换成query execution plan (QEP)。 这个阶段仍然做一些逻辑的重写工作,这个阶段的转换可以理解为基于cost-based优化前做准备,详细步骤如下:

  • Logical transformations

  • optimize_derived : Optimize the query expression representing a derived table/view.

  • optimize_cond : Equality/constant propagation.

  • prune_table_partitions : Partition pruning.

  • optimize_aggregated_query : COUNT(*), MIN(), MAX() constant substitution in case of implicit grouping.

  • substitute_gc : ORDER BY optimization, substitute all expressions in the WHERE condition and ORDER/GROUP lists that match generated columns (GC) expressions with GC fields, if any.

  • Perform cost-based optimization of table order and access path selection.

  • JOIN::make_join_plan() : Set up join order and initial access paths.

  • Post-join order optimization

  • substitute_for_best_equal_field : Create optimal table conditions from the where clause and the join conditions.

  • make_join_query_block : Inject outer-join guarding conditions.

  • Adjust data access methods after determining table condition (several times).

  • optimize_distinct_group_order : Optimize ORDER BY/DISTINCT.

  • optimize_fts_query : Perform FULLTEXT search before all regular searches.

  • remove_eq_conds : Removes const and eq items. Returns the new item, or nullptr if no condition.

  • replace_index_subquery/create_access_paths_for_index_subquery : See if this subquery can be evaluated with subselect_indexsubquery_engine.

  • setup_join_buffering : Check whether join cache could be used.

  • Code generation

  • alloc_qep(tables) : Create QEP_TAB array.

  • test_skip_sort : Try to optimize away sorting/distinct.

  • make_join_readinfo : Plan refinement stage: do various setup things for the executor.

  • make_tmp_tables_info : Setup temporary table usage for grouping and/or sorting.

  • push_to_engines : Push (parts of) the query execution down to the storage engines if they can provide faster execution of the query, or part of it.

  • create_access_paths : generated ACCESS_PATH.

2 新优化器的入口

新优化器默认不打开,必须通过set optimizer_switch="hypergraph_optimizer=on"; 来打开。主要通过FindBestQueryPlan函数来实现,逻辑如下:- 先判断是否属于新优化器可以支持的Query语法(CheckSupportedQuery),不支持的直接返回错误ER_HYPERGRAPH_NOT_SUPPORTED_YET。

  • 转化top_join_list变成JoinHypergraph结构。由于Hypergraph是比较独立的算法层面的实现,JoinHypergraph结构用来更好的把数据库的结构包装到Hypergraph的edges和nodes的概念上的。

  • 通过EnumerateAllConnectedPartitions实现论文中的DPhyp算法。

  • CostingReceiver类包含了过去JOIN planning的主要逻辑,包括根据cost选择相应的访问路径,根据DPhyp生成的子计划进行评估,保留cost最小的子计划。

  • 得到root_path后,接下来处理group/agg/having/sort/limit的。对于Group by操作,目前Hypergraph使用sorting first + streaming aggregation的方式。

举例看下Plan(AccessPath)和SQL的关系:

最后生成Iterator执行器框架需要的Iterator执行载体,AccessPath和Iterator是一对一的关系(Access paths are a query planning structure that correspond 1:1 to iterators)。

Query_expression::m_root_iterator = CreateIteratorFromAccessPath(......)

unique_ptr_destroy_only<RowIterator> CreateIteratorFromAccessPath(
     THD *thd, AccessPath *path, JOIN *join, bool eligible_for_batch_mode) {
......
   switch (path->type) {
     case AccessPath::TABLE_SCAN: {
       const auto &param = path->table_scan();
       iterator = NewIterator<TableScanIterator>(
           thd, param.table, path->num_output_rows, examined_rows);
       break;
     }
     case AccessPath::INDEX_SCAN: {
       const auto &param = path->index_scan();
       if (param.reverse) {
         iterator = NewIterator<IndexScanIterator<true>>(
             thd, param.table, param.idx, param.use_order, path->num_output_rows,
             examined_rows);
       } else {
         iterator = NewIterator<IndexScanIterator<false>>(
             thd, param.table, param.idx, param.use_order, path->num_output_rows,
             examined_rows);
       }
       break;
     }
     case AccessPath::REF: {
......
}

3 对比PostgreSQL

testdb=# EXPLAIN SELECT * FROM tbl_a WHERE id < 300 ORDER BY data;
                          QUERY PLAN                           
---------------------------------------------------------------
 Sort  (cost=182.34..183.09 rows=300 width=8)
   Sort Key: data
   ->  Seq Scan on tbl_a  (cost=0.00..170.00 rows=300 width=8)
         Filter: (id < 300)
(4 rows)

五 总结

本文主要focus在MySQL最新版本官方的源码上,重点分析了官方的重构在多阶段和各阶段结构上的变化和联系,更多的是为了让大家了解一个全新的MySQL的发展。

本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/dOQUraSsTdpc5TKu_id_bw

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 目录