分治算法(divide and conquer)是五大常用算法(分治算法、动态规划算法、贪心算法、回溯法、分治界限法)之一,很多人在平时学习中可能只是知道分治算法,但是可能并没有系统的学习分治算法,本篇就带你较为全面的去认识和了解分治算法。
在学习分治算法之前,问你一个问题,相信大家小时候都有存钱罐的经历,父母亲人如果给钱都会往自己的宝藏中存钱,我们每隔一段时间都会清点清点钱。但是一堆钱让你处理起来你可能觉得很复杂,因为数据相对于大脑有点庞大了,并且很容易算错,你可能会将它先分成几个小份算,然后再叠加起来计算总和就获得这堆钱的总数了
当然如果你觉得各个部分钱数量还是太大,你依然可以进行划分然后合并,我们之所以这么多是因为:
当然这些钱都是想出来的……
分治算法是用了分治思想的一种算法,什么是分治?
分治,字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。在计算机科学中,分治法就是运用分治思想的一种很重要的算法。分治法是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)等等。
将父问题分解为子问题同等方式求解,这和递归的概念很吻合,所以在分治算法通常以递归的方式实现(当然也有非递归的实现方式)。分治算法的描述从字面上也很容易理解,分、治其实还有个合并的过程:
一般分治算法在正文中分解为两个即以上的递归调用,并且子类问题一般是不相交的(互不影响)。当求解一个问题规模很大很难直接求解,但是规模较小的时候问题很容易求解并且这个问题并且问题满足分治算法的适用条件,那么就可以使用分治算法。
那么采用分治算法解决的问题需要 满足那些条件(特征) 呢?
1 . 原问题规模通常比较大,不易直接解决,但问题缩小到一定程度就能较容易的解决。
2 . 问题可以分解为若干规模较小、求解方式相同(似)的子问题。且子问题之间求解是独立的互不影响。
3 . 合并问题分解的子问题可以得到问题的解。
你可能会疑惑分治算法和递归有什么关系?其实分治重要的是一种思想,注重的是问题分、治、合并的过程。而递归是一种方式(工具),这种方式通过方法自己调用自己形成一个来回的过程,而分治可能就是利用了多次这样的来回过程。
对于分治算法的经典问题,重要的是其思想,因为我们大部分借助递归去实现,所以在代码实现上大部分都是很简单,而本篇也重在讲述思想。
分治算法的经典问题,个人将它分成两大类:子问题完全独立和子问题不完全独立。
1 . 子问题完全独立就是原问题的答案可完全由子问题的结果推出。
2 . 子问题不完全独立,有些区间类的问题或者跨区间问题使用分治可能结果跨区间,在考虑问题的时候需要仔细借鉴下。
二分搜索是分治的一个实例,只不过二分搜索有着自己的特殊性
正常二分将一个完整的区间分成两个区间,两个区间本应单独找值然后确认结果,但是通过有序的区间可以直接确定结果在那个区间,所以分的两个区间只需要计算其中一个区间,然后继续进行一直到结束。实现方式有递归和非递归,但是非递归用的更多一些:
public int searchInsert(int[] nums, int target) {
if(nums[0]>=target)return 0;//剪枝
if(nums[nums.length-1]==target)return nums.length-1;//剪枝
if(nums[nums.length-1]<target)return nums.length;
int left=0,right=nums.length-1;
while (left<right) {
int mid=(left+right)/2;
if(nums[mid]==target)
return mid;
else if (nums[mid]>target) {
right=mid;
}
else {
left=mid+1;
}
}
return left;
}
快排也是分治的一个实例,快排每一趟会选定一个数,将比这个数小的放左面,比这个数大的放右面,然后递归分治求解两个子区间,当然快排因为在分的时候就做了很多工作,当全部分到最底层的时候这个序列的值就是排序完的值。这是一种分而治之的体现。
public void quicksort(int [] a,int left,int right)
{
int low=left;
int high=right;
//下面两句的顺序一定不能混,否则会产生数组越界!!!very important!!!
if(low>high)//作为判断是否截止条件
return;
int k=a[low];//额外空间k,取最左侧的一个作为衡量,最后要求左侧都比它小,右侧都比它大。
while(low<high)//这一轮要求把左侧小于a[low],右侧大于a[low]。
{
while(low<high&&a[high]>=k)//右侧找到第一个小于k的停止
{
high--;
}
//这样就找到第一个比它小的了
a[low]=a[high];//放到low位置
while(low<high&&a[low]<=k)//在low往右找到第一个大于k的,放到右侧a[high]位置
{
low++;
}
a[high]=a[low];
}
a[low]=k;//赋值然后左右递归分治求之
quicksort(a, left, low-1);
quicksort(a, low+1, right);
}
快排在分的时候做了很多工作,而归并就是相反,归并在分的时候按照数量均匀分,而合并时候已经是两两有序的进行合并的,因为两个有序序列O(n)级别的复杂度即可得到需要的结果。而逆序数在归并排序基础上变形同样也是分治思想求解。
private static void mergesort(int[] array, int left, int right) {
int mid=(left+right)/2;
if(left<right)
{
mergesort(array, left, mid);
mergesort(array, mid+1, right);
merge(array, left,mid, right);
}
}
private static void merge(int[] array, int l, int mid, int r) {
int lindex=l;int rindex=mid+1;
int team[]=new int[r-l+1];
int teamindex=0;
while (lindex<=mid&&rindex<=r) {//先左右比较合并
if(array[lindex]<=array[rindex])
{
team[teamindex++]=array[lindex++];
}
else {
team[teamindex++]=array[rindex++];
}
}
while(lindex<=mid)//当一个越界后剩余按序列添加即可
{
team[teamindex++]=array[lindex++];
}
while(rindex<=r)
{
team[teamindex++]=array[rindex++];
}
for(int i=0;i<teamindex;i++)
{
array[l+i]=team[i];
}
}
最大子序列和的问题我们可以使用动态规划的解法,但是也可以使用分治算法来解决问题,但是最大子序列和在合并的时候并不是简单的合并,因为子序列和涉及到一个长度的问题,所以正确结果不一定全在最左侧或者最右侧,而可能出现结果的区域为:
用一张图可以表示为:
所以在具体考虑的时候需要将无法递归得到结果的中间那个最大值串的结果也算出来参与左侧、右侧值得比较。
力扣53. 最大子序和在实现的代码为:
public int maxSubArray(int[] nums) {
int max=maxsub(nums,0,nums.length-1);
return max;
}
int maxsub(int nums[],int left,int right)
{
if(left==right)
return nums[left];
int mid=(left+right)/2;
int leftmax=maxsub(nums,left,mid);//左侧最大
int rightmax=maxsub(nums,mid+1,right);//右侧最大
int midleft=nums[mid];//中间往左
int midright=nums[mid+1];//中间往右
int team=0;
for(int i=mid;i>=left;i--)
{
team+=nums[i];
if(team>midleft)
midleft=team;
}
team=0;
for(int i=mid+1;i<=right;i++)
{
team+=nums[i];
if(team>midright)
midright=team;
}
int max=midleft+midright;//中间的最大值
if(max<leftmax)
max=leftmax;
if(max<rightmax)
max=rightmax;
return max;
}
最近点对是一个分治非常成功的运用之一。在二维坐标轴上有若干个点坐标,让你求出最近的两个点的距离,如果让你直接求那么枚举暴力是个非常非常大的计算量,我们通常采用分治的方法来优化这种问题。
如果直接分成两部分分治计算你肯定会发现如果最短的如果一个在左一个在右会出现问题。我们可以优化一下。
在具体的优化方案上,按照x或者y的维度进行考虑,将数据分成两个区域,先分别计算(按照同方法)左右区域内最短的点对。然后根据这个两个中较短的距离向左和向右覆盖,计算被覆盖的左右点之间的距离,找到最小那个距离与当前最短距离比较即可。
这样你就可以发现就这个一次的操作(不考虑子情况),左侧红点就避免和右侧大部分红点进行距离计算(O(n2)的时间复杂度)。事实上,在进行左右区间内部计算的时候,它其实也这样递归的进行很多次分治计算。如图所示:
这样下去就可以节省很多次的计算量。
但是这种分治会存在一种问题就是二维坐标可能点都聚集某个方法某条轴那么可能效果并不明显(点都在x=2附近对x分割作用就不大),需要注意一下。
杭电1007推荐给大家,ac的代码为:
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.List;
public class Main {
static int n;
public static void main(String[] args) throws IOException {
StreamTokenizer in=new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
//List<node>list=new ArrayList();
while(in.nextToken()!=StreamTokenizer.TT_EOF)
{
n=(int)in.nval;if(n==0) {break;}
node no[]=new node[n];
for(int i=0;i<n;i++)
{
in.nextToken();double x=in.nval;
in.nextToken();double y=in.nval;
// list.add(new node(x,y));
no[i]=new node(x,y);
}
Arrays.sort(no, com);
double min= search(no,0,n-1);
out.println(String.format("%.2f", Math.sqrt(min)/2));out.flush();
}
}
private static double search(node[] no, int left,int right) {
int mid=(right+left)/2;
double minleng=0;
if(left==right) {return Double.MAX_VALUE;}
else if(left+1==right) {minleng= (no[left].x-no[right].x)*(no[left].x-no[right].x)+(no[left].y-no[right].y)*(no[left].y-no[right].y);}
else minleng= min(search(no,left,mid),search(no,mid,right));
int ll=mid;int rr=mid+1;
while(no[mid].y-no[ll].y<=Math.sqrt(minleng)/2&&ll-1>=left) {ll--;}
while(no[rr].y-no[mid].y<=Math.sqrt(minleng)/2&&rr+1<=right) {rr++;}
for(int i=ll;i<rr;i++)
{
for(int j=i+1;j<rr+1;j++)
{
double team=0;
if(Math.abs((no[i].x-no[j].x)*(no[i].x-no[j].x))>minleng) {continue;}
else
{
team=(no[i].x-no[j].x)*(no[i].x-no[j].x)+(no[i].y-no[j].y)*(no[i].y-no[j].y);
if(team<minleng)minleng=team;
}
}
}
return minleng;
}
private static double min(double a, double b) {
// TODO 自动生成的方法存根
return a<b?a:b;
}
static Comparator<node>com=new Comparator<node>() {
@Override
public int compare(node a1, node a2) {
// TODO 自动生成的方法存根
return a1.y-a2.y>0?1:-1;
}};
static class node
{
double x;
double y;
public node(double x,double y)
{
this.x=x;
this.y=y;
}
}
}
到这里,分治算法就讲这么多了,因为分治算法重要在于理解其思想,还有一些典型的分治算法解决的问题,例如大整数乘法、Strassen矩阵乘法、棋盘覆盖、线性时间选择、循环赛日程表、汉诺塔等问题你可以自己研究其分治的思想和原理。
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/2NEXOQDyw6UyJ-7c2eeB-w
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。