环境:- 处理器架构:arm64
无论是任务处于用户态还是内核态,经常会因为等待某些事件而睡眠(可能是等待IO读写完成,也可能等待其他内核路径释放一把锁等)。本文来探讨一下,任务处于睡眠中有哪些状态?睡眠对于任务来说究竟意味着什么?内核是如何管理睡眠的任务的?我们会结合内核源代码来分析任务的睡眠,力求全方位角度来剖析。
注:由于篇幅问题,文章分为上下两篇,且这里不区分进程和任务,统一使用任务来表示进程。
主要讲解以下内容:
任务睡眠有三种状态:
浅度睡眠
中度睡眠
深度睡眠
进程描述符的state使用TASK_INTERRUPTIBLE表示这种状态。
为可中断的睡眠状态,这里可中断是可以被信号所打断(唤醒)。
这里给出被信号打断/唤醒的代码路径:
kernel/signal.c
SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
->kill_something_info
->__kill_pgrp_info
->group_send_sig_info
->do_send_sig_info
->send_signal
->__send_signal
->complete_signal
->signal_wake_up
-> signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0)
->wake_up_state(t, state | TASK_INTERRUPTIBLE)
->try_to_wake_up
可以看到在信号传递的时候,会通过signal_wake_up唤醒从处于可中断睡眠状态的任务。
进程描述符的state使用TASK_KILLABLE表示这种状态。
可以被致命信号所打断。
这里给出被致命信号打断/唤醒的代码路径:
include/linux/sched.h
#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
kernel/signal.c
SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
->kill_something_info
->__kill_pgrp_info
->group_send_sig_info
->do_send_sig_info
->send_signal
->__send_signal
->complete_signal
->
if (sig_fatal(p, sig) &&
¦ !(signal->flags & SIGNAL_GROUP_EXIT) &&
¦ !sigismember(&t->real_blocked, sig) &&
¦ (sig == SIGKILL || !p->ptrace)) { //致命信号
...
signal_wake_up(t, 1);
-> signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0) // resume == 1
-> wake_up_state(t, state | TASK_INTERRUPTIBLE)
->try_to_wake_up
...
}
进程描述符的state使用TASK_UNINTERRUPTIBLE表示这种状态。
为不可中断的睡眠状态,不能被任何信号所唤醒(特定条件没有满足发生信号唤醒可能导致数据不一致等问题,这种场景使用这种睡眠状态,如等待IO读写完成)。
睡眠都是主动发生调度,即主动调用主调度器。
睡眠的主要步骤如下:
1)设置任务状态为睡眠状态
2)记录睡眠的任务
3)发起主动调度
下面我们来详细解读下这几个步骤:
这一步很有必要,一来标识进入了睡眠状态,二来是主调度器会根据睡眠标志将任务从运行队列删除。
注:睡眠状态描述见上一小节!
这一步也非常有必要,内核会将即将睡眠的任务记录下来,要么加入到链表中管理,要么使用数据结构记录。
如延迟睡眠场景,内核将即将睡眠的任务记录在定时器相关的数据结构中;可睡眠的信号量场景中,内核将即将睡眠的任务加入到信号量的相关链表中。
记录的目的在于:当唤醒条件满足时,唤醒函数能够找到想要唤醒的任务。
这一步是真正进行睡眠的操作,主要是调用主调度器来发起主动调度让出处理器。
下面我们来看下主调度器为任务睡眠所作的处理:
kernel/sched/core.c
__schedule
->
prev_state = prev->state; //获得前一个任务状态
if (!preempt && prev_state) { //如果是主动调度 且任务状态不为0
if (signal_pending_state(prev_state, prev)) { //有挂起的信号
prev->state = TASK_RUNNING; //设置状态为可运行
} else {
deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); //cpu运行队列中删除任务
}
}
next = pick_next_task(rq, prev, &rf); //选择下一个任务
context_switch //进行上下文切换
来看下deactivate_task对于睡眠任务做的主要工作:
deactivate_task
->deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK)
->p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; //设置任务的on_rq 为0 标识是睡眠
dequeue_task(rq, p, flags);
->p->sched_class->dequeue_task(rq, p, flags)
->dequeue_task_fair
->dequeue_entity
...
if (se != cfs_rq->curr) //不是cpu当前 任务
__dequeue_entity(cfs_rq, se); //cfs运行队列删除
->se->on_rq = 0; //标识调度实体不在运行队列!!!
->if (!(flags & DEQUEUE_SLEEP))
se->vruntime -= cfs_rq->min_vruntime; //调度实体的虚拟运行时间 减去 cfs运行队列的最小虚拟运行时间
deactivate_task会设置任务的on_rq 为0来 标识是睡眠 ,然后 调用到调度类的dequeue_task方法,在cfs中设置se->on_rq = 0标识调度实体不在cfs队列。
可以看到,发起主动调度的时候,在主调度器中会做判断:如果是主动调度且任务状态不为0 (即为不是可运行的TASK_RUNNING)时,如果没有挂起的信号,就会将任务从cpu的运行队列中“删除”,然后选择下一个任务,进行上下文切换。
将即将睡眠的任务从cpu的运行队列中“删除”意义重大:主调度器再次选择下一个任务的时候不会在选择睡眠的任务(因为主调度器总是在运行队列中选择任务运行,除非任务被唤醒,重新加入运行队列)。
注意:1.这里的删除指的是设置对应标志如p->on_rq=0,se->on_rq = 0,当选择下一个任务的时候不会在加入运行队列中。2.即将睡眠的任务是cpu上的当前任务(curr指向)。3.调用主调度器后,即将睡眠的任务不会再次加入cpu运行队列,除非被唤醒。
再来看下选择下一个任务的时候会做哪些事情和睡眠有关(暂不考虑组调度情况):
pick_next_task
->class->pick_next_task
->pick_next_task_fair //kernel/sched/fair.c
->if (prev)
put_prev_task(rq, prev); //对前一个任务处理
se = pick_next_entity(cfs_rq, NULL); //选择下一个任务
set_next_entity(cfs_rq, se);
主要看下put_prev_task:
put_prev_task
->prev->sched_class->put_prev_task(rq, prev)
->put_prev_task_fair
->put_prev_entity
-> if (prev->on_rq) { //前一个任务的调度实体on_rq不为0?
update_stats_wait_start(cfs_rq, prev);
/* Put 'current' back into the tree. */
__enqueue_entity(cfs_rq, prev); //重新加入cfs运行队列
/* in !on_rq case, update occurred at dequeue */
update_load_avg(cfs_rq, prev, 0);
}
cfs_rq->curr = NULL; //设置cfs运行队列的curr为NULL
put_prev_task所做的主要工作就是将前一个任务从cfs运行队列中删除,在这里就是通过调用__enqueue_entity将对应的调度实体重新加入cfs队列的红黑树,但是对于即将睡眠的任务之前在主调度器中通过deactivate_task将prev->on_rq设置为0了,所以对于即将睡眠的任务来说,它对应的调度实体不会在重新加入cfs运行队列的红黑树。
下面来看下睡眠图示:
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/ucmwMKajH4ZaDhtenk6ISw
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。