本篇主要内容如下:
主要内容
我们都在讨论分布式,特别是面试的时候,不管是招初级软件工程师还是高级,都会要求懂分布式,甚至要求用过。传得沸沸扬扬的分布式到底是什么东东,有什么优势?
风遁·螺旋手里剑
看过火影
的同学肯定知道漩涡鸣人
的招牌忍术:多重影分身之术
。
过程和心得
:多个分身的感受和经历都是相通的。比如 A 分身去找卡卡西(鸣人的老师)请教问题,那么其他分身也会知道 A 分身问的什么问题。漩涡鸣人
有另外一个超级厉害的忍术,需要由几个影分身完成:风遁·螺旋手里剑。
这个忍术是靠三个鸣人一起协作完成的。这两个忍术和分布式有什么关系?
案例:
哨兵机制
,可以知道集群环境下哪台 Redis
节点挂了。Leader 选举机制
,如果某个节点挂了,会从 follower
中重新选举一个 leader 出来。(leader 作为写数据的入口,follower 作为读的入口)那多重影分身之术
有什么缺点?
讲到分布式
不得不知道 CAP
定理和 Base
理论,这里给不知道的同学做一个扫盲。
在理论计算机科学中,CAP 定理指出对于一个分布式计算系统来说,不可能通是满足以下三点:
一致性(Consistency)
所有节点访问同一份最新的数据副本。
可用性(Availability)
每次请求都能获取到非错的响应,但不保证获取的数据为最新数据
分区容错性(Partition tolerance)
不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在 C 和 A 之间做出选择)
BASE
是 Basically Available
(基本可用)、Soft state
(软状态)和 Eventually consistent
(最终一致性)三个短语的缩写。BASE
理论是对 CAP
中 AP
的一个扩展,通过牺牲强一致性来获得可用性,当出现故障允许部分不可用但要保证核心功能可用,允许数据在一段时间内是不一致的,但最终达到一致状态。满足 BASE
理论的事务,我们称之为柔性事务
。
将消息队列里面的消息分摊到多个节点(指某台机器或容器)上,所有节点的消息队列之和就包含了所有消息。
所谓幂等性就是无论多少次操作和第一次的操作结果一样。如果消息被多次消费,很有可能造成数据的不一致。而如果消息不可避免地被消费多次,如果我们开发人员能通过技术手段保证数据的前后一致性,那也是可以接受的,这让我想起了 Java 并发编程中的 ABA 问题,如果出现了 [[ABA问题] ,若能保证所有数据的前后一致性也能接受。
RabbitMQ
、RocketMQ
、Kafka
消息队列中间件都有可能出现消息重复消费问题。这种问题并不是 MQ 自己保证的,而是需要开发人员来保证。
这几款消息队列中间都是是全球最牛的分布式消息队列,那肯定考虑到了消息的幂等性。我们以 Kafka 为例,看看 Kafka 是怎么保证消息队列的幂等性。
Kafka 有一个 偏移量
的概念,代表着消息的序号,每条消息写到消息队列都会有一个偏移量,消费者消费了数据之后,每过一段固定的时间,就会把消费过的消息的偏移量提交一下,表示已经消费过了,下次消费就从偏移量后面开始消费。
坑:
当消费完消息后,还没来得及提交偏移量,系统就被关机了,那么未提交偏移量的消息则会再次被消费。
如下图所示,队列中的数据 A、B、C,对应的偏移量分别为 100、101、102,都被消费者消费了,但是只有数据 A 的偏移量 100 提交成功,另外 2 个偏移量因系统重启而导致未及时提交。
系统重启,偏移量未提交
重启后,消费者又是拿偏移量 100 以后的数据,从偏移量 101 开始拿消息。所以数据 B 和数据 C 被重复消息。
如下图所示:
重启后,重复消费消息
微信支付结果通知场景
微信官方文档上提到微信支付通知结果可能会推送多次,需要开发者自行保证幂等性。第一次我们可以直接修改订单状态(如支付中 -> 支付成功),第二次就根据订单状态来判断,如果不是支付中,则不进行订单处理逻辑。
插入数据库场景
每次插入数据时,先检查下数据库中是否有这条数据的主键 id,如果有,则进行更新操作。
写 Redis 场景
Redis 的 Set
操作天然幂等性,所以不用考虑 Redis 写数据的问题。
其他场景方案
生产者发送每条数据时,增加一个全局唯一 id,类似订单 id。每次消费时,先去 Redis 查下是否有这个 id,如果没有,则进行正常处理消息,且将 id 存到 Redis。如果查到有这个 id,说明之前消费过,则不要进行重复处理这条消息。
不同业务场景,可能会有不同的幂等性方案,大家选择合适的即可,上面的几种方案只是提供常见的解决思路。
坑:
消息丢失会带来什么问题?如果是订单下单、支付结果通知、扣费相关的消息丢失,则可能造成财务损失,如果量很大,就会给甲方带来巨大损失。
那消息队列是否能保证消息不丢失呢?答案:否。主要有三种场景会导致消息丢失。
消息队列之消息丢失
生产者丢失消息
对于 RabbitMQ 来说,生产者发送数据之前开启 RabbitMQ 的事务机制channel.txselect
,如果消息没有进队列,则生产者受到异常报错,并进行回滚 channel.txRollback
,然后重试发送消息;如果收到了消息,则可以提交事务 channel.txCommit
。但这是一个同步的操作,会影响性能。
我们可以采用另外一种模式:confirm
模式来解决同步机制的性能问题。每次生产者发送的消息都会分配一个唯一的 id,如果写入到了 RabbitMQ 队列中,则 RabbitMQ 会回传一个 ack
消息,说明这个消息接收成功。如果 RabbitMQ 没能处理这个消息,则回调 nack
接口。说明需要重试发送消息。
也可以自定义超时时间 + 消息 id 来实现超时等待后重试机制。但可能出现的问题是调用 ack 接口时失败了,所以会出现消息被发送两次的问题,这个时候就需要保证消费者消费消息的幂等性。
事务模式
和 confirm
模式的区别:消息队列丢失消息
消息队列的消息可以放到内存中,或将内存中的消息转到硬盘(比如数据库)中,一般都是内存和硬盘中都存有消息。如果只是放在内存中,那么当机器重启了,消息就全部丢失了。如果是硬盘中,则可能存在一种极端情况,就是将内存中的数据转换到硬盘的期间中,消息队列出问题了,未能将消息持久化到硬盘。
解决方案
Queue
的时候将其设置为持久化。deliveryMode
设置为 2 。confirm
模式,可以重试发送消息。消费者丢失消息
消费者刚拿到数据,还没开始处理消息,结果进程因为异常退出了,消费者没有机会再次拿到消息。
解决方案
ack
,每次生产者将消息写入消息队列后,就自动回传一个 ack
给生产者。ack
,告诉消息队列我处理完了。问题: 那这种主动 ack
有什么漏洞了?如果 主动 ack
的时候挂了,怎么办?
则可能会被再次消费,这个时候就需要幂等处理了。
问题: 如果这条消息一直被重复消费怎么办?
则需要有加上重试次数的监测,如果超过一定次数则将消息丢失,记录到异常表或发送异常通知给值班人员。
RabbitMQ 丢失消息的处理方案
场景:Kafka
的某个 broker(节点)宕机了,重新选举 leader (写入的节点)。如果 leader 挂了,follower 还有些数据未同步完,则 follower 成为 leader 后,消息队列会丢失一部分数据。
解决方案
replication.factor
参数,值必须大于 1,要求每个 partition 必须有至少 2 个副本。min.insyc.replicas
必须大于 1,表示一个 leader 至少一个 follower 还跟自己保持联系。
坑:
用户先下单成功,然后取消订单,如果顺序颠倒,则最后数据库里面会有一条下单成功的订单。
RabbitMQ 场景:
RabbitMQ消息乱序场景 RabbitMQ 消息乱序场景
RabbitMQ 解决方案:
RabbitMQ 解决方案
Kafka 场景:
Kafka 消息丢失场景
Kafka 解决方案:
Kafka 消息乱序解决方案
消息积压:消息队列里面有很多消息来不及消费。
场景 1: 消费端出了问题,比如消费者都挂了,没有消费者来消费了,导致消息在队列里面不断积压。
场景 2: 消费端出了问题,比如消费者消费的速度太慢了,导致消息不断积压。
坑:比如线上正在做订单活动,下单全部走消息队列,如果消息不断积压,订单都没有下单成功,那么将会损失很多交易。
消息队列之消息积压
解决方案:解铃还须系铃人
消息积压解决方案
坑:
RabbitMQ 可以设置过期时间,如果消息超过一定的时间还没有被消费,则会被 RabbitMQ 给清理掉。消息就丢失了。
消息过期失效
解决方案:
消息过期失效解决方案
坑:
当消息队列因消息积压导致的队列快写满,所以不能接收更多的消息了。生产者生产的消息将会被丢弃。
解决方案:
Purge Message
操作。在高频访问数据库的场景中,我们会在业务层和数据层之间加入一套缓存机制,来分担数据库的访问压力,毕竟访问磁盘 I/O 的速度是很慢的。比如利用缓存来查数据,可能5ms就能搞定,而去查数据库可能需要 50 ms,差了一个数量级。而在高并发的情况下,数据库还有可能对数据进行加锁,导致访问数据库的速度更慢。
分布式缓存我们用的最多的就是 Redis了,它可以提供分布式缓存服务。
Redis 可以实现利用哨兵机制
实现集群的高可用。那什么十哨兵机制呢?
sentinel
,中文名:哨兵
。
坑:
当主节点发生故障时,需要进行主备切换,可能会导致数据丢失。
主节点异步同步数据给备用节点的过程中,主节点宕机了,导致有部分数据未同步到备用节点。而这个从节点又被选举为主节点,这个时候就有部分数据丢失了。
主节点所在机器脱离了集群网络,实际上自身还是运行着的。但哨兵选举出了备用节点作为主节点,这个时候就有两个主节点都在运行,相当于两个大脑在指挥这个集群干活,但到底听谁的呢?这个就是脑裂。
那怎么脑裂怎么会导致数据丢失呢?如果发生脑裂后,客户端还没来得及切换到新的主节点,连的还是第一个主节点,那么有些数据还是写入到了第一个主节点里面,新的主节点没有这些数据。那等到第一个主节点恢复后,会被作为备用节点连到集群环境,而且自身数据会被清空,重新从新的主节点复制数据。而新的主节点因没有客户端之前写入的数据,所以导致数据丢失了一部分。
注意:缓存雪崩
、缓存穿透
、缓存击穿
并不是分布式所独有的,单机的时候也会出现。所以不在分布式的坑之列。
坑:
分库分表是一个运维层面需要做的事情,有时会采取凌晨宕机开始升级。可能熬夜到天亮,结果升级失败,则需要回滚,其实对技术团队都是一种煎熬。
坑:
分库分表看似光鲜亮丽,但分库分表会引入什么新的问题呢?
坑:
唯一 ID 的生成方式有 n 种,各有各的用途,别用错了。
数据库自增 ID。每个数据库每增加一条记录,自己的 ID 自增 1。
多个库的 ID 可能重复,这个方案可以直接否掉了,不适合分库分表后的 ID 生成。
信息不安全
缺点
适用 UUID
唯一 ID。
UUID 太长、占用空间大。
不具有有序性,作为主键时,在写入数据时,不能产生有顺序的 append 操作,只能进行 insert 操作,导致读取整个 B+
树节点到内存,插入记录后将整个节点写回磁盘,当记录占用空间很大的时候,性能很差。
缺点
获取系统当前时间作为唯一 ID。
高并发时,1 ms内可能有多个相同的 ID。
信息不安全
缺点
Twitter 的 snowflake
(雪花算法):Twitter 开源的分布式 id 生成算法,64 位的 long 型的 id,分为 4 部分
snowflake 算法
基本原理和优缺点:
1 bit:不用,统一为 0
41 bits:毫秒时间戳,可以表示 69 年的时间。
10 bits:5 bits 代表机房 id,5 个 bits 代表机器 id。最多代表 32 个机房,每个机房最多代表 32 台机器。
12 bits:同一毫秒内的 id,最多 4096 个不同 id,自增模式。
优点:
毫秒数在高位,自增序列在低位,整个ID都是趋势递增的。
不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的。
可以根据自身业务特性分配bit位,非常灵活。
缺点:
强依赖机器时钟,如果机器上时钟回拨(可以搜索 2017 年闰秒 7:59:60),会导致发号重复或者服务会处于不可用状态。
百度的 UIDGenerator
算法。
UIDGenerator 算法
基于 Snowflake 的优化算法。
借用未来时间和双 Buffer 来解决时间回拨与生成性能等问题,同时结合 MySQL 进行 ID 分配。
优点:解决了时间回拨和生成性能问题。
缺点:依赖 MySQL 数据库。
美团的 Leaf-Snowflake
算法。
图片来源于美团
获取 id 是通过代理服务访问数据库获取一批 id(号段)。
双缓冲:当前一批的 id 使用 10%时,再访问数据库获取新的一批 id 缓存起来,等上批的 id 用完后直接用。
优点:
Leaf服务可以很方便的线性扩展,性能完全能够支撑大多数业务场景。
ID号码是趋势递增的8byte的64位数字,满足上述数据库存储的主键要求。
容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务。
可以自定义max_id的大小,非常方便业务从原有的ID方式上迁移过来。
即使DB宕机,Leaf仍能持续发号一段时间。
偶尔的网络抖动不会影响下个号段的更新。
缺点:
ID号码不够随机,能够泄露发号数量的信息,不太安全。
怎么选择:一般自己的内部系统,雪花算法足够,如果还要更加安全可靠,可以选择百度或美团的生成唯一 ID 的方案。
坑
:如何保证分布式中的事务正确执行,是个大难题。
XA 方案
应用场景:
缺点:
基本原理:
适用场景:
优势:
缺点:
可靠消息一致性方案
基本原理:
RocketMQ
来实现消息事务。prepared
(预备状态,半消息),该消息无法被订阅。prepared
消息改为 commit
(提交事务消息),B 系统就可以订阅到消息了。prepared
的消息,回调 A 系统,让 A 系统告诉 MQ 本地事务处理得怎么样了,是继续等待还是回滚。Rollback
信号,丢弃消息。若执行本地事务成功,则 MQ 收到 Commit
信号。基本原理:
最大努力服务
会定时尝试重新调用系统 B,尽自己最大的努力让系统 B 重试,重试多次后,还是不行就只能放弃了。转到开发人员去排查以及后续人工补偿。分布式还有很多坑,这篇只是一个小小的总结,从这些坑中,我们也知道分布式有它的优势也有它的劣势,那到底该不该用分布式,完全取决于业务、时间、成本以及开发团队的综合实力。后续我会继续分享分布式中的一些底层原理,当然也少不了分享一些避坑指南。
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/Z9sf9HGqxoeT2sVjINbTHA
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。