JVM相关的异常,一直是一线研发比较头疼的问题。因为对于业务代码,JVM的运行基本算是黑盒,当异常发生时,较难直观的看到和找到问题所在,这也是我们一直要研究其内部逻辑的原因。
本篇就由一个近期线上JVM内存泄漏的例子,带大家强行分析一波~
某天,同事来找我帮忙,原来是某系统毫无征兆的来了一连串报警,一波机器的老年代内存占用率超过阈值~
老年代内存占用可以看到,在7月中旬之前,内存占用还是比较正常的,每次GC都可以回收掉很大一部分的老年代对象。
而中旬之后,老年代内存一直缓慢增长而无法释放。很明显,应该是对象没法被正常回收导致。
内存泄漏了~
如果是刚上线的项目爆出了此类问题,因为影响面比较小,可以直接先回滚代码,止血为第一要务。
不过,这个项目明显已经上线N多天,中间还不知道上过多少需求,而且,既然流量近期有上涨导致问题出现,说明,已经对客开流量了。
回滚是不可能了,抓紧时间定位问题,上线修复吧。
一般的步骤:
不过,因为这次dump下来的文件十多G,太大的,MAT基本无能为力,只能打印出来人工分析了
jmap结果查看
很幸运,异常对象非常明显。Point对象和GeoDispLocal对象,居然多达好几百万实例数,那就先看下代码中这两个对象是怎么用的。
private static final CacheMap<String, List<GeoDispLocal>> NEAR_DISTRICT_CACHE = new CacheMap<String, List<GeoDispLocal>>(3600 * 1000, 1000);
private static final CacheMap<Integer, Point> LOCAL_POINT_CACHE = new CacheMap<Integer, Point>(3600 * 1000, 6000);
都是被存放在本次缓存CacheMap中(内存泄漏的一个常见原因,就是因为被静态集合持有,无法回收导致),而dump文件中的CacheMap.Entry也是非常高的。
CacheMap就是我们的第一优先怀疑对象了。先看下这个缓存类是怎么回事:
public class CacheMap<K, V> {
private final long expireMs;
private LRUMap<K, CacheMap.Entry<V>> valueMap;
//其他略
}
内部依赖一个带LRU功能的map,怎么实现的呢:
public class LRUMap<K, V> extends LinkedHashMap<K, V> {
private static final long serialVersionUID = 1L;
private final int maxCapacity;
// 这个map不会扩容
private static final float LOAD_FACTOR = 0.99f;
private final ReadWriteLock lock = new ReentrantReadWriteLock();
public LRUMap(int maxCapacity) {
super(maxCapacity, LOAD_FACTOR, true);
this.maxCapacity = maxCapacity;
}
@Override
protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
return size() > maxCapacity;
}
@Override
public V get(Object key) {
try {
lock.readLock().lock();
return super.get(key);
} finally {
lock.readLock().unlock();
}
}
@Override
public V put(K key, V value) {
try {
lock.writeLock().lock();
return super.put(key, value);
} finally {
lock.writeLock().unlock();
}
}
//remove clear 略
}
内部是一个依赖LinkedHashMap实现的LRU缓存。看注释,目的是要构建一个限定容量、且不会进行扩容的MAP(百度了一波,和网上的实现一模一样~)。那么,实际情况真的和想象中的一样么?。
我们来看容量和扩容相关的设置:为什么设计者认为该LRUMap不会进行扩容?
//**把容量和扩容相关的参数摘出来**
//用户期望的最大容量
private final int maxCapacity;
//加载系数
private static final float LOAD_FACTOR = 0.99f;
//构造函数中调用LinkedHashMap进行初始化
super(maxCapacity, LOAD_FACTOR, true);
@Override //复写删除最久元素条件方法
protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
//当LinkedHashMap.size 比 我们限定容量大时,执行删除
return size() > maxCapacity;
}
按我们的实际使用实例化一下:
因为复写了LRU条件函数,当size>6000时会进行LRU替换。因此,理论上,size永远不会达到8110。
怎么解决并发下的读写冲突呢?
//读写锁
private final ReadWriteLock lock = new ReentrantReadWriteLock();
public V get(Object key) {
try {
lock.readLock().lock();
return super.get(key);
} finally {
lock.readLock().unlock();
}
}
public V put(K key, V value) {
try {
lock.writeLock().lock();
return super.put(key, value);
} finally {
lock.writeLock().unlock();
}
}
设计者为了解决并发下的读写冲突,给查询和修改方法加了锁,为了兼顾性能,使用了读写锁:在get的时候加读锁,在put/remove的时候加写锁。
看起来,整个设计很好的解决了LRUMap的固定容量和并发操作问题,那么事实是什么样的呢?
其实,这个问题很早就有人分析过了[1] ,是因为LinkedHashMap在get读操作的时候,会为了维护LRU从而进行元素修改,即将get到的元素转移到链表最后。这样,就导致了读写并发问题,但这个解释感觉朦朦胧胧,因此,我决定在其基础上对读写并发问题再讲细致一些。
都加了读写锁为什么不好使呢?
这里我们还是需要先明确,读写锁的概念和适用场景:读写锁,允许多个线程共享读锁,适用于读多写少的情况。(前提是,读操作不会改变存储结构)
所以,问题就发生在get操作上,LinkedHashMap的get操作被重写,目的是为了实现LRU功能,在get之后,将当前节点移动到链表最后。
移动啊,同志们,这明显是一个写操作,所以,加读锁还有用么?
即允许多线程进入,又进行了修改,那还能起什么作用,能没有并发问题么?
下面,对照节点移动的代码,详细拆解一下多线程下的并发问题:
get之后的节点移动,将节点移动到最后
实际拆解分析如下,为什么在多线程的情况下,会出现内存泄漏:
时间片下多线程的get执行
我们看到,在线程1执行完前两句,让出了时间片,当线程2执行到p.after=null之后又出让了时间片,这样,本来a应该是后面的<2,B>节点,结果多线程下变成了null,最终,后面两个节点被踢出了链表,删除操作无法触达,造成内存泄漏。
验证的代码就不贴了,大家有兴趣可以自己试一下~
话说回来,既然定位到了问题,这个内存泄漏怎么修复呢?
可以把读写锁改成互斥锁。或者直接用分布式存储,能慢多少呢,是不是,既方便,简单,又免得为了节约机器内存自己构造LRUMap。
每一个八股文都不只是为了面试,而是每次线上问题排查的基石。千万别把八股文的作用定位错了。。。
[1]LinkedHashMap引发的内存泄漏: "https://blog.csdn.net/yejingtao703/article/details/108062262"
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/btANDXYuIEAS2E8bs5fdYA
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。