如何优雅的使用范型?

发表于 3年以前  | 总阅读数:241 次

前言

相信大家对Java泛型并不陌生,无论是开源框架还是JDK源码都能看到它,毫不夸张的说,泛型是通用设计上必不可少的元素,所以真正理解与正确使用泛型,是一门必修课,本文将解开大家对泛型的疑惑,并通过大量实践,让你get到泛型正确的使用姿势,下面开始进入正题吧!

大纲

基础

因为本文重实践,而且面对的是Java开发人员群体,大家对泛型都有基础,所以泛型基础这块会快速过,帮助大家回忆下即可,后面主要的则重点是通配符

编译期与运行期

编译期是指把源码交给编译器编译成计算机可执行文件的过程,运行期是指把编译后的文件交给计算机执行,直到程序结束。

Java中就是把.java文件编译成.class文件,再把编译后的文件交给J V M加载执行,如下图

泛型

泛型又叫“参数化类型”,这么抽象的专业词汇不好理解,阿星就用大白话的形式来解释。

人是铁,饭是刚,吃饭是刚需,要吃饭自然就少不了碗筷,但是没有规定碗只能盛饭,除了盛饭它还能盛汤、盛菜,制造者只造这个碗,不关心碗盛什么,具体要盛什么由使用者来决定,这就是泛型的概念。

泛型就是在定义类、接口、方法的时候指定某一种特定类型(碗),让类、接口、方法的使用者来决定具体用哪一种类型的参数(盛的东西)。

Java的泛型是在1.5引入的,只在编译期做泛型检查,运行期泛型就会消失,我们把这称为“泛型擦除”,最终类型都会变成 Object

在没有泛型之前,从集合中读取到的每一个对象都必须进行类型转换,如果不小心插入了错误的类型对象,在运行时的转换处理就会出错,有了泛型后,你可以告诉编译器每个集合接收的对象类型是什么,编译器在编译期就会做类型检查,告知是否插入了错误类型的对象,使得程序更加安全,也更加清楚。

最后插一句,泛型擦除与原生态类型(List就是原生态,List非原生态)是为了照顾1.5以前设计上的缺陷,为兼容非泛型代码,所作出的折中策略,所以不推荐使用原生态类型,如果使用了原生态类型,就失去了泛型在安全性与描述性方面的优势。

泛型类

类上定义泛型,作用于类的成员变量与函数,代码实例如下

public class GenericClass<T>{
    //成员变量
    private T t;

    public  void function(T t){

    }

    public T functionTwo(T t){
        //注意,这个不是泛型方法!!!
       return t;
    }
}

泛型接口

接口上定义泛型,作用于函数,代码实例如下

public interface GenericInterface<T> {

    public T get();

    public void set(T t);

    public T delete(T t);

    default T defaultFunction(T t){
        return t;
    }
}

泛型函数

函数返回类型旁加上泛型,作用于函数,代码实例如下

public class GenericFunction {

    public <T> void function(T t) {
    }

    public <T> T functionTwo(T t) {
        return t;
    }

    public <T> String functionThree(T t) {
        return "";
    }
}

通配符

通配符是为了让Java泛型支持范围限定,这样使得泛型的灵活性提升,同时也让通用性设计有了更多的空间。

  • <?>:无界通配符,即类型不确定,任意类型
  • <? extends T>:上边界通配符,即?是继承自T的任意子类型,遵守只读不写
  • <? super T>:下边界通配符,即?T的任意父类型,遵守只写不读

相信大部分人,都是倒在通配符这块,这里多唠叨点,「通配符限定的范围是体现在确认“参数化类型”的时候,而不是“参数化类型”填充后」,可能这句话不太好理解,来看看下面的代码

/**
 * 1.创建泛型为Number的List类,Integer、Double、Long等都是Number的子类
 *   new ArrayList<>() 等价于 new ArrayList<Number>()
 */
List<Number> numberList = new ArrayList<Number>();

/**
 * 2.添加不同子类
 */
numberList.add(1);//添加Integer类型
numberList.add(0.5);//添加Double类型
numberList.add(10000L);//添加Long类型

/**
 * 3.创建泛型为Number的List类,Integer、Double、Long等都是Number的子类
 *   引用是泛型类别是Number,但具体实现指定的泛型是Integer
 */
List<Number> numberListTwo = new ArrayList<Integer>();//err 异常编译不通过

/**
 * 4.创建泛型为Integer的List类,把该对象的引用地址指向泛型为Number的List
 */
List<Integer> integerList = new ArrayList<Integer>();
List<Number> numberListThree = integerList;//err 异常编译不通过
  • 第一步:我们创建一个泛型为NumberList,编译器检查泛型类别是否一致,一致编译通过(确认参数化类型)
  • 第二步:泛型Number已经填充完毕,调用add函数,此时add入参泛型T已经填充为Numberadd可入参Number或其子类
  • 第三步:我们又创建一个泛型为NumberList,编译器检查泛型类别是否一致,不一致编译失败,提示错误(确认参数化类型)
  • 第四步:其实与第三步一样,只是做了一个间接的引用(确认参数化类型)

如果要解决上面的编译不通过问题,就需要使用通配符,代码如下

/**
 * 1.上边界通配符,Number与Number子类
 */
List<? extends Number> numberListFour = new ArrayList<Number>();
numberListFour = new ArrayList<Integer>();
numberListFour = new ArrayList<Double>();
numberListFour = new ArrayList<Long>();

/**
 * 2.下边界通配符,Integer与Integer父类
 */
List<? super Integer> integerList = new ArrayList<Integer>();
integerList = new ArrayList<Number>();
integerList = new ArrayList<Object>();

/**
 * 3. 无界通配符,类型不确定,任意类型
 */
List<?> list = new ArrayList<Integer>();
list = new ArrayList<Number>();
list = new ArrayList<Object>();
list = new ArrayList<String>();

最后再来说上边界通配符只读不写,下边界通配符只写不读到底是什么意思,用最简单的话来说

  • <? extends T>上边界通配符不作为函数入参,只作为函数返回类型,比如List<? extends T>的使用add函数会编译不通过,get函数则没问题
  • <? super T>下边界通配符不作为函数返回类型,只作为函数入参,比如List<? super T>add函数正常调用,get函数也没问题,但只会返回Object,所以意义不大

大家只需要记住上面的规则即可,如果想知道为什么这样设计,可以去了解下P E C S (producer-extends,consumer-super)原则

最佳实践

相信过完基础理论大家很多东西都回忆起来了,不要着急,现在开始进入正题,后面内容会有大量的代码实践,所以大家要坐稳了,别晕车了,晕车的话多看几遍,或者评论区提出你的疑问~

无限通配符场景

使用泛型,类型参数不确定并且不关心实际的类型参数,就可以使用<?>,像下面的代码

/**
 * 获取集合长度
 */
public static <T> int size(Collection<T> list){
    return list.size();
}

/**
 * 获取集合长度-2
 */
public static int sizeTwo(Collection<?>  list){
    return list.size();
}


/**
 * 获取任意Set两个集合交集数量
 */
public static <T,T2> int beMixedSum(Set<T> s1,Set<T2> s2){
    int i = 0;
    for (T t : s1) {
        if (s2.contains(t)) {
            i++;
        }
    }
    return i;
}

/**
 * 获取任意两个Set集合交集数量-2
 */
public static  int beMixedSumTwo(Set<?> s1,Set<?> s2){
    int i = 0;
    for (Object o : s1) {
        if (s2.contains(o)) {
            i++;
        }
    }
    return i;
}

sizesizeTwo这两个函数都可以正常使用,但是站在设计的角度,sizeTwo会更合适,函数的目标是返回任意集合的长度,入参采用<T><?>都可以接收,但是函数本身并不关心你是什么类型参数,仅仅只要返回长度即可,所以采用<?>

beMixedSumbeMixedSumTwo这两个函数比较,道理同上面一样,beMixedSumTwo会更合适,函数的目标是返回两个任意Set集合的交集数量,beMixedSum函数虽然内部有使用到<T>,但是意义不大,因为contains入参是Object,函数本身并不关心你是什么类型参数,所以采用<?>

忘了补充另一个场景,就是原生态类型,上述代码使用原生态类型函数使用也没问题,但是强烈不推荐,因为使用原生态就丢失了泛型带来的安全性与描述性!!!

上下边界通配符场景

首先泛型是不变的,换句话说List<Object> != List<String>,有时候需要更多灵活性,就可以通过上下边界通配符来做提升。

/**
 * 集合工具类
 */
public class CollectionUtils<T>{

    /**
     * 复制集合-泛型
     */
    public List<T>  listCopy(Collection<T> collection){
        List<T> newCollection = new ArrayList<>();
        for (T t : collection) {
            newCollection.add(t);
        }
        return newCollection;
    }

}

上面声明了一个CollectionUtils类,拥有listCopy方法,传入任意一个集合返回新的集合,看似没有什么问题,也很灵活,那再看看下面这段代码。

public static void main(String[] agrs){
    CollectionUtils<Number> collectionUtils = new CollectionUtils<>();
    List<Number>  list = new ArrayList<>();
    //list.add....
    List<Integer>  listTwo = new ArrayList<>();
    //listTwo.add....
    List<Double>  listThree = new ArrayList<>();
    //listThree.add....

    List<Number> list1 = collectionUtils.listCopy(list);
    list1 = collectionUtils.listCopy(listTwo);//err 编译异常
    list1 = collectionUtils.listCopy(listThree);//err 编译异常
}

创建CollectionUtils类,泛型的类型参数为NumberlistCopy函数入参的泛型填充为Number,此时listCopy只支持泛型为NumberList,如果要让它同时支持泛型为Number子类的List,就需要使用上边界通配符,我们再追加一个方法

/**
 * 集合工具
 */
public class CollectionUtils<T>{

    /**
     * 复制集合-泛型
     */
    public List<T>  listCopy(Collection<T> collection){
        List<T> newCollection = new ArrayList<>();
        for (T t : collection) {
            newCollection.add(t);
        }
        return newCollection;
    }

    /**
     * 复制集合-上边界通配符
     */
    public  List<T>  listCopyTwo(Collection<? extends T> collection){
        List<T> newCollection = new ArrayList<>();
        for (T t : collection) {
            newCollection.add(t);

        }
        return newCollection;
    }
}

public static void main(String[] agrs){
    CollectionUtils<Number> collectionUtils = new CollectionUtils<>();
    List<Number>  list = new ArrayList<>();
    //list.add....
    List<Integer>  listTwo = new ArrayList<>();
    //listTwo.add....
    List<Double>  listThree = new ArrayList<>();
    //listThree.add....

    List<Number> list1 = collectionUtils.listCopyTwo(list);
    list1 = collectionUtils.listCopyTwo(listTwo);
    list1 = collectionUtils.listCopyTwo(listThree);
}

现在使用listCopyTwo就没有问题,listCopyTwo对比listCopy它的适用范围更广泛也更灵活,listCopy能做的listCopyTwo能做,listCopyTwo能做的listCopy就不一定能做了,除此之外,细心的小伙伴肯定发现了,使用上边界通配符的collection在函数内只使用到了读操作,遵循了只读不写原则。

看完了上边界通配符,再来看看下边界通配符,依然是复制方法



/**
 * 儿子
 */
public class Son extends Father{}

/**
 * 父亲
 */
public class Father  extends  Grandpa{}

/**
 * 爷爷
 */
public class Grandpa {}

/**
 * 集合工具
 */
public class CollectionUtils<T>{

    /**
     * 复制集合-泛型
     * target目标   src来源
     */
   public void copy(List<T> target,List<T> src){
        if (src.size() > target.size()){
            for (int i = 0; i < src.size(); i++) {
                target.set(i,src.get(i));
            }
        }
    }

}

定义了3个类,分别是Son儿子、Father父亲、Grandpa爷爷,它们是继承关系,作为集合元素,还声明了一个CollectionUtils类,拥有copy方法,传入两个集合,目标集合与来源集合,把来源集合元素复制到目标集合中,再看看下面这段代码

public static void main(String[] agrs){
    CollectionUtils<Father> collectionUtils = new CollectionUtils<>();

    List<Father>  fatherTargets = new ArrayList<>();
    List<Father>  fatherSources = new ArrayList<>();
    //fatherSources.add...
    collectionUtils.copy(fatherTargets,fatherSources);

    //子类复制到父类
    List<Son> sonSources = new ArrayList<>();
    //sonSources.add...
    collectionUtils.copy(fatherTargets,sonSources);//err 编译异常

}

创建CollectionUtils类,泛型的类型参数为Father父亲,copy函数入参的泛型填充为Father,此时copy只支持泛型为FatherList,也就说,只支持泛型的类型参数为Father之间的复制,如果想支持把子类复制到父类要怎么做,先分析下copy函数,copy函数的入参src在函数内部只涉及到了get函数,即读操作(泛型只作为get函数返回类型),符合只读不写原则,可以采用上边界通配符,调整代码如下

/**
 * 集合工具
 */
public class CollectionUtils<T>{

    /**
     * 复制集合-泛型
     * target目标   src来源
     */
    public void copy(List<T> target,List<? extends T> src){
        if (src.size() > target.size()){
            for (int i = 0; i < src.size(); i++) {
                target.set(i,src.get(i));
            }
        }
    }
}

public static void main(String[] agrs){
    CollectionUtils<Father> collectionUtils = new CollectionUtils<>();

    List<Father>  fatherTargets = new ArrayList<>();
    List<Father>  fatherSources = new ArrayList<>();
    //fatherSources.add...
    collectionUtils.copy(fatherTargets,fatherSources);

    //子类复制到父类
    List<Son> sonSources = new ArrayList<>();
    //sonSources.add...
    collectionUtils.copy(fatherTargets,sonSources);

    //把子类复制到父类的父类
    List<Grandpa> grandpaTargets = new ArrayList<>();
    collectionUtils.copy(grandpaTargets,sonSources);//err 编译异常
}

src入参调整为上边界通配符后,copy函数传入List<Son> sonSources就没问题了,此时的copy函数相较之前的更加灵活了,支持同类与父子类复制,接着又发现了一个问题,目前能复制到上一级父类,如果是多级父类,还无法支持,继续分析copy函数,copy函数的入参target在函数内部只涉及到了add函数,即写操作(泛型只作为add函数入参),符合只写不读原则,可以采用下边界通配符,调整代码如下

/**
 * 集合工具
 */
public class CollectionUtils<T>{

    /**
     * 复制集合-泛型
     * target目标   src来源
     */
    public void copy(List<? super T>  target,List<? extends T> src){
        if (src.size() > target.size()){
            for (int i = 0; i < src.size(); i++) {
                target.set(i,src.get(i));
            }
        }
    }
}

public static void main(String[] agrs){
    CollectionUtils<Father> collectionUtils = new CollectionUtils<>();

    List<Father>  fatherTargets = new ArrayList<>();
    List<Father>  fatherSources = new ArrayList<>();
    //fatherSources.add...
    collectionUtils.copy(fatherTargets,fatherSources);

    //子类复制到父类
    List<Son> sonSources = new ArrayList<>();
    //sonSources.add...
    collectionUtils.copy(fatherTargets,sonSources);

    //把子类复制到父类的父类
    List<Grandpa> grandpaTargets = new ArrayList<>();
    collectionUtils.copy(grandpaTargets,sonSources);
}

copy函数终于是完善了,可以说现在是真正支持父子类复制,不难发现copy函数的设计还是遵循通配符原则的,target作为目标集合,只做写入,符合只写不读原则,采用了下边界通配符,src作为来源集合,只做读取,符合只读不写原则,采用了上边界通配符,最后设计出来的copy函数,它的灵活性与适用范围是远超<T>方式设计的。

最后总结一下,什么时候用通配符,如果参数泛型类即要读也要写,那么就不推荐使用,使用正常的泛型即可,如果参数泛型类只读或写,就可以根据原则采用对应的上下边界,是不是十分简单,最后再说一次读写的含义,这块确实很容易晕

  • 读:所谓读是指参数泛型类,泛型只作为该参数类的函数返回类型,那这个函数就是读,List作为参数泛型类,它的get函数就是读
  • 写:所谓写是指参数泛型类,泛型只作为该参数类的函数入参,那这个函数就是写,List作为参数泛型类,它的add函数就是读

留给小题,大家可以思考下StreamforEach函数与map函数的设计,在Java1.8 Stream中是大量用到了通配符设计

-----------------------------------------------------------------
/**
 * 下边界通配符
 */
void forEach(Consumer<? super T> action);

public interface Consumer<T> {

    //写方法
    void accept(T t);
}

-----------------------------------------------------------------
/**
 * 上下边界通配符
 */
<R> Stream<R> map(Function<? super T, ? extends R> mapper)

public interface Function<T, R> {

     //读写方法,T只作为入参符合写,R只作为返回值,符合读
    R apply(T t);
}
-----------------------------------------------------------------

//代码案例
public static void main(String[] agrs) {

        List<Father> fatherList = new ArrayList<>();

        Consumer<? super Father> action = new Consumer<Father>() {
            @Override
            public void accept(Father father) {
                //执行father逻辑
            }
        };

         //下边界通配符向上转型
        Consumer<? super Father> actionTwo = new Consumer<Grandpa>() {
            @Override
            public void accept(Grandpa grandpa) {
                //执行grandpa逻辑
            }
        };

         Function<? super Father, ? extends Grandpa> mapper = new Function<Father, Grandpa>() {
            @Override
            public Grandpa apply(Father father) {
                //执行father逻辑后返回Grandpa
                return new Grandpa();
            }
        };

        //下边界通配符向上转型,上边界通配符向下转型
         Function<? super Father, ? extends Grandpa> mapperTwo = new Function<Grandpa, Son>() {
            @Override
            public Son apply(Grandpa grandpa) {
                //执行grandpa逻辑后,返回Son
                return new Son();
            }
        };

        fatherList.stream().forEach(action);
        fatherList.stream().forEach(actionTwo);

        fatherList.stream().map(mapper);
        fatherList.stream().map(mapperTwo);


    }
-----------------------------------------------------------------

有限制泛型场景

有限制泛型很简单了,应用场景就是你需要对泛型的参数类型做限制,就可以使用它,比如下面这段代码

public class GenericClass<T extends Grandpa> {


    public void test(T t){
        //....
    }

}

public static void main(String[] agrs){
    GenericClass<Grandpa> grandpaGeneric = new GenericClass<>();
    grandpaGeneric.test(new Grandpa());
    grandpaGeneric.test(new Father());
    grandpaGeneric.test(new Son());

    GenericClass<Father> fatherGeneric = new GenericClass<>();
    fatherGeneric.test(new Father());
    fatherGeneric.test(new Son());

    GenericClass<Son> sonGeneric = new GenericClass<>();
    sonGeneric.test(new Son());

    GenericClass<Object> ObjectGeneric = new GenericClass<>();//err 编译异常

}

GenericClass泛型参数化类型被限制为Grandpa或其子类,就这么简单,千万不要把有限制泛型与上边界通配符搞混了,这两个不是同一个东西(<T extends Grandpa> != <? extends Grandpa>),<T extends Grandpa>不需要遵循上边界通配符的原则,它就是简单的泛型参数化类型限制,而且没有super的写法。

递归泛型场景

在有限制泛型的基础上,又可以衍生出递归泛型,就是自身需要使用到自身,比如集合进行自定义元素大小比较的时候,通常会配合Comparable接口来完成,看看下面这段代码


public class Person implements Comparable<Person> {

    private int age;

    public Person(int age) {
        this.age = age;
    }

    public int getAge() {
        return age;
    }

    @Override
    public int compareTo(Person o) {
        // 0代表相等 1代表大于  <0代表小于    
        return this.age - o.age;
    }
}


/**
 * 集合工具
 */
public class CollectionUtils{

    /**
     * 获取集合最大值
     */
    public static  <E extends Comparable<E>> E max(List<E> list){
        E result = null;
        for (E e : list) {
             if (result == null || e.compareTo(result) > 0){
                 result = e;
             }
        }
        return result;
    }
}


public static void main(String[] agrs){

    List<Person> personList = new ArrayList<>();
    personList.add(new Person(12));
    personList.add(new Person(19));
    personList.add(new Person(20));
    personList.add(new Person(5));
    personList.add(new Person(18));
    //返回年龄最大的Person元素 
    Person max = CollectionUtils.max(personList);

}

重点关注max泛型函数,max泛型函数的目标是返回集合最大的元素,内部比较元素大小,取最大值返回,也就说需要和同类型元素做比较,<E extends Comparable<E>>含义是,泛型E必须是Comparable或其子类/实现类,因为比较元素是同类型,所以Comparable泛型也是E,最终接收的List泛型参数化类型必须实现了Comparable接口,并且Comparable接口填充的泛型也是该参数化类型,就像上述代码一样。

本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/lsoSZM-EJtwgiCCQlSOodg

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237293次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8132次阅读
 目录