在Linux系统中,每个进程都有独立的虚拟内存空间,也就是说不同的进程访问同一段虚拟内存地址所得到的数据是不一样的,这是因为不同进程相同的虚拟内存地址会映射到不同的物理内存地址上。
但有时候为了让不同进程之间进行通信,需要让不同进程共享相同的物理内存,Linux通过 共享内存
来实现这个功能。下面先来介绍一下Linux系统的共享内存的使用。
要使用共享内存,首先需要使用 shmget()
函数获取共享内存,shmget()
函数的原型如下:
int shmget(key_t key, size_t size, int shmflg);
key
一般由 ftok()
函数生成,用于标识系统的唯一IPC资源。size
指定创建的共享内存大小。shmflg
指定 shmget()
函数的动作,比如传入 IPC_CREAT
表示要创建新的共享内存。函数调用成功时返回一个新建或已经存在的的共享内存标识符,取决于shmflg的参数。失败返回-1,并设置错误码。
shmget()
函数返回的是一个标识符,而不是可用的内存地址,所以还需要调用 shmat()
函数把共享内存关联到某个虚拟内存地址上。shmat()
函数的原型如下:
void *shmat(int shmid, const void *shmaddr, int shmflg);
shmid
是 shmget()
函数返回的标识符。shmaddr
是要关联的虚拟内存地址,如果传入0,表示由系统自动选择合适的虚拟内存地址。shmflg
若指定了 SHM_RDONLY
位,则以只读方式连接此段,否则以读写方式连接此段。函数调用成功返回一个可用的指针(虚拟内存地址),出错返回-1。
当一个进程不需要共享内存的时候,就需要取消共享内存与虚拟内存地址的关联。取消关联共享内存通过 shmdt()
函数实现,原型如下:
int shmdt(const void *shmaddr);
shmaddr
是要取消关联的虚拟内存地址,也就是 shmat()
函数返回的值。函数调用成功返回0,出错返回-1。
下面通过一个例子来介绍一下共享内存的使用方法。在这个例子中,有两个进程,分别为 进程A
和 进程B
,进程A
创建一块共享内存,然后写入数据,进程B
获取这块共享内存并且读取其内容。
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#define SHM_PATH "/tmp/shm"
#define SHM_SIZE 128
int main(int argc, char *argv[])
{
int shmid;
char *addr;
key_t key = ftok(SHM_PATH, 0x6666);
shmid = shmget(key, SHM_SIZE, IPC_CREAT|IPC_EXCL|0666);
if (shmid < 0) {
printf("failed to create share memory\n");
return -1;
}
addr = shmat(shmid, NULL, 0);
if (addr <= 0) {
printf("failed to map share memory\n");
return -1;
}
sprintf(addr, "%s", "Hello World\n");
return 0;
}
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#define SHM_PATH "/tmp/shm"
#define SHM_SIZE 128
int main(int argc, char *argv[])
{
int shmid;
char *addr;
key_t key = ftok(SHM_PATH, 0x6666);
char buf[128];
shmid = shmget(key, SHM_SIZE, IPC_CREAT);
if (shmid < 0) {
printf("failed to get share memory\n");
return -1;
}
addr = shmat(shmid, NULL, 0);
if (addr <= 0) {
printf("failed to map share memory\n");
return -1;
}
strcpy(buf, addr, 128);
printf("%s", buf);
return 0;
}
测试时先运行进程A,然后再运行进程B,可以看到进程B会打印出 “Hello World”,说明共享内存已经创建成功并且读取。
我们先通过一幅图来了解一下共享内存的大概原理,如下图:
通过上图可知,共享内存是通过将不同进程的虚拟内存地址映射到相同的物理内存地址来实现的,下面将会介绍Linux的实现方式。
在Linux内核中,每个共享内存都由一个名为 struct shmid_kernel
的结构体来管理,而且Linux限制了系统最大能创建的共享内存为128个。通过类型为 struct shmid_kernel
结构的数组来管理,如下:
struct shmid_ds {
struct ipc_perm shm_perm; /* operation perms */
int shm_segsz; /* size of segment (bytes) */
__kernel_time_t shm_atime; /* last attach time */
__kernel_time_t shm_dtime; /* last detach time */
__kernel_time_t shm_ctime; /* last change time */
__kernel_ipc_pid_t shm_cpid; /* pid of creator */
__kernel_ipc_pid_t shm_lpid; /* pid of last operator */
unsigned short shm_nattch; /* no. of current attaches */
unsigned short shm_unused; /* compatibility */
void *shm_unused2; /* ditto - used by DIPC */
void *shm_unused3; /* unused */
};
struct shmid_kernel
{
struct shmid_ds u;
/* the following are private */
unsigned long shm_npages; /* size of segment (pages) */
pte_t *shm_pages; /* array of ptrs to frames -> SHMMAX */
struct vm_area_struct *attaches; /* descriptors for attaches */
};
static struct shmid_kernel *shm_segs[SHMMNI]; // SHMMNI等于128
从注释可以知道 struct shmid_kernel
结构体各个字段的作用,比如 shm_npages
字段表示共享内存使用了多少个内存页。而 shm_pages
字段指向了共享内存映射的虚拟内存页表项数组等。
另外 struct shmid_ds
结构体用于管理共享内存的信息,而 shm_segs数组
用于管理系统中所有的共享内存。
通过前面的例子可知,要使用共享内存,首先需要调用 shmget()
函数来创建或者获取一块共享内存。shmget()
函数的实现如下:
asmlinkage long sys_shmget (key_t key, int size, int shmflg)
{
struct shmid_kernel *shp;
int err, id = 0;
down(¤t->mm->mmap_sem);
spin_lock(&shm_lock);
if (size < 0 || size > shmmax) {
err = -EINVAL;
} else if (key == IPC_PRIVATE) {
err = newseg(key, shmflg, size);
} else if ((id = findkey (key)) == -1) {
if (!(shmflg & IPC_CREAT))
err = -ENOENT;
else
err = newseg(key, shmflg, size);
} else if ((shmflg & IPC_CREAT) && (shmflg & IPC_EXCL)) {
err = -EEXIST;
} else {
shp = shm_segs[id];
if (shp->u.shm_perm.mode & SHM_DEST)
err = -EIDRM;
else if (size > shp->u.shm_segsz)
err = -EINVAL;
else if (ipcperms (&shp->u.shm_perm, shmflg))
err = -EACCES;
else
err = (int) shp->u.shm_perm.seq * SHMMNI + id;
}
spin_unlock(&shm_lock);
up(¤t->mm->mmap_sem);
return err;
}
shmget()
函数的实现比较简单,首先调用 findkey()
函数查找值为key的共享内存是否已经被创建,findkey()
函数返回共享内存在 shm_segs数组
的索引。如果找到,那么直接返回共享内存的标识符即可。否则就调用 newseg()
函数创建新的共享内存。newseg()
函数的实现也比较简单,就是创建一个新的 struct shmid_kernel
结构体,然后设置其各个字段的值,并且保存到 shm_segs数组
中。
shmat()
函数用于将共享内存映射到本地虚拟内存地址,由于 shmat()
函数的实现比较复杂,所以我们分段来分析这个函数:
asmlinkage long sys_shmat (int shmid, char *shmaddr, int shmflg, ulong *raddr)
{
struct shmid_kernel *shp;
struct vm_area_struct *shmd;
int err = -EINVAL;
unsigned int id;
unsigned long addr;
unsigned long len;
down(¤t->mm->mmap_sem);
spin_lock(&shm_lock);
if (shmid < 0)
goto out;
shp = shm_segs[id = (unsigned int) shmid % SHMMNI];
if (shp == IPC_UNUSED || shp == IPC_NOID)
goto out;
上面这段代码主要通过 shmid
标识符来找到共享内存描述符,上面说过系统中所有的共享内存到保存在 shm_segs
数组中。
if (!(addr = (ulong) shmaddr)) {
if (shmflg & SHM_REMAP)
goto out;
err = -ENOMEM;
addr = 0;
again:
if (!(addr = get_unmapped_area(addr, shp->u.shm_segsz))) // 获取一个空闲的虚拟内存空间
goto out;
if(addr & (SHMLBA - 1)) {
addr = (addr + (SHMLBA - 1)) & ~(SHMLBA - 1);
goto again;
}
} else if (addr & (SHMLBA-1)) {
if (shmflg & SHM_RND)
addr &= ~(SHMLBA-1); /* round down */
else
goto out;
}
上面的代码主要找到一个可用的虚拟内存地址,如果在调用 shmat()
函数时没有指定了虚拟内存地址,那么就通过 get_unmapped_area()
函数来获取一个可用的虚拟内存地址。
spin_unlock(&shm_lock);
err = -ENOMEM;
shmd = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
spin_lock(&shm_lock);
if (!shmd)
goto out;
if ((shp != shm_segs[id]) || (shp->u.shm_perm.seq != (unsigned int) shmid / SHMMNI)) {
kmem_cache_free(vm_area_cachep, shmd);
err = -EIDRM;
goto out;
}
上面的代码主要通过调用 kmem_cache_alloc()
函数创建一个 vm_area_struct
结构,在内存管理一章知道,vm_area_struct
结构用于管理进程的虚拟内存空间。
shmd->vm_private_data = shm_segs + id;
shmd->vm_start = addr;
shmd->vm_end = addr + shp->shm_npages * PAGE_SIZE;
shmd->vm_mm = current->mm;
shmd->vm_page_prot = (shmflg & SHM_RDONLY) ? PAGE_READONLY : PAGE_SHARED;
shmd->vm_flags = VM_SHM | VM_MAYSHARE | VM_SHARED
| VM_MAYREAD | VM_MAYEXEC | VM_READ | VM_EXEC
| ((shmflg & SHM_RDONLY) ? 0 : VM_MAYWRITE | VM_WRITE);
shmd->vm_file = NULL;
shmd->vm_offset = 0;
shmd->vm_ops = &shm_vm_ops;
shp->u.shm_nattch++; /* prevent destruction */
spin_unlock(&shm_lock);
err = shm_map(shmd);
spin_lock(&shm_lock);
if (err)
goto failed_shm_map;
insert_attach(shp,shmd); /* insert shmd into shp->attaches */
shp->u.shm_lpid = current->pid;
shp->u.shm_atime = CURRENT_TIME;
*raddr = addr;
err = 0;
out:
spin_unlock(&shm_lock);
up(¤t->mm->mmap_sem);
return err;
...
}
上面的代码主要是设置刚创建的 vm_area_struct
结构的各个字段,比较重要的是设置其 vm_ops
字段为 shm_vm_ops
,shm_vm_ops
定义如下:
static struct vm_operations_struct shm_vm_ops = {
shm_open, /* open - callback for a new vm-area open */
shm_close, /* close - callback for when the vm-area is released */
NULL, /* no need to sync pages at unmap */
NULL, /* protect */
NULL, /* sync */
NULL, /* advise */
shm_nopage, /* nopage */
NULL, /* wppage */
shm_swapout /* swapout */
};
shm_vm_ops
的 nopage
回调为 shm_nopage()
函数,也就是说,当发生页缺失异常时将会调用此函数来恢复内存的映射。
从上面的代码可看出,shmat()
函数只是申请了进程的虚拟内存空间,而共享内存的物理空间并没有申请,那么在什么时候申请物理内存呢?答案就是当进程发生缺页异常的时候会调用 shm_nopage()
函数来恢复进程的虚拟内存地址到物理内存地址的映射。
shm_nopage() 函数是当发生内存缺页异常时被调用的,代码如下:
static struct page * shm_nopage(struct vm_area_struct * shmd, unsigned long address, int no_share)
{
pte_t pte;
struct shmid_kernel *shp;
unsigned int idx;
struct page * page;
shp = *(struct shmid_kernel **) shmd->vm_private_data;
idx = (address - shmd->vm_start + shmd->vm_offset) >> PAGE_SHIFT;
spin_lock(&shm_lock);
again:
pte = shp->shm_pages[idx]; // 共享内存的页表项
if (!pte_present(pte)) { // 如果内存页不存在
if (pte_none(pte)) {
spin_unlock(&shm_lock);
page = get_free_highpage(GFP_HIGHUSER); // 申请一个新的物理内存页
if (!page)
goto oom;
clear_highpage(page);
spin_lock(&shm_lock);
if (pte_val(pte) != pte_val(shp->shm_pages[idx]))
goto changed;
} else {
...
}
shm_rss++;
pte = pte_mkdirty(mk_pte(page, PAGE_SHARED)); // 创建页表项
shp->shm_pages[idx] = pte; // 保存共享内存的页表项
} else
--current->maj_flt; /* was incremented in do_no_page */
done:
get_page(pte_page(pte));
spin_unlock(&shm_lock);
current->min_flt++;
return pte_page(pte);
...
}
shm_nopage() 函数的主要功能是当发生内存缺页时,申请新的物理内存页,并映射到共享内存中。由于使用共享内存时会映射到相同的物理内存页上,从而不同进程可以共用此块内存。
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/vjBi9iniwJP9aU2ZkJD7Hg
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。