导读 :提到搜索引擎,大家首先想到的一般是ElasticSearch。在文本作为信息主要载体的阶段,ElasticSearch技术栈是文本搜索的最佳实践。然而目前搜索领域的数据基础发生了深刻的变化,远远超过文本的范畴。视频、语音、图像、文本、社交关系、时空数据等非结构化数据构筑了更加“立体”的语义基础。
传统的文本搜索技术与实践方法很难套用到新兴的数据搜索场景上。主要的原因是,在非结构化数据中含有大量隐式的语义信息,而这些信息没办法通过语言文字进行准确的描述。例如,商品识别、人脸匹配、药物筛选、用户偏好与内容推荐等。对于这样的搜索场景,目前的主流做法是通过神经网络对数据中的语义进行提取。但这些提取出来的信息并不以文字的方式进行描述,而是表示为具有隐式语义的高维向量。
向量数据库以这些具有隐式语义的向量作为数据基础,向上层应用提供搜索服务。在AI作为搜索主要驱动力的新阶段,向量数据库是构成非结构化数据搜索技术栈的重要基础软件。
以下,我们从基本模型的角度出发,具体聊一聊为什么文本搜索技术难以适用到更加广泛的数据搜索场景,并对向量搜索的基本模型进行介绍。
对于非结构化数据的语义,常见的做法是在高维空间内对其进行描述。整个空间定义了所有可能的语义范围。在这个空间内,语义相似度通过距离来度量。每个在实际业务中出现的非结构化数据被映射到这个空间内的一个点 ( 或称为一个高维向量 ),两个非结构化数据的相似度即是这两个点间的距离。不论是面向文本的TF-IDF向量,还是基于神经网络构造的embeddings,其语义相关性分析都是遵循这个思路。
为了方便理解,我们先从大家熟悉的文本搜索聊起。
考虑以下三段文本:
A:”......第一次偷袭,是在淮海战场之上,张大彪建议先打就近的敌暂七师......“
B:”......这两个年轻人,不讲武德,来骗!来偷袭!打我69岁的老同志。这好吗?这不好......“
C:”......华尔街不讲武德,WSB散户被拔网线......“
从精简的模型上看,ElasticSearch ( 或Lucene ) 中的每一份文本都可以用一个高维向量来表示。向量的维度是词典中所包含的词的总数,每个维度对应一个词,而各维度上的值为这些词的TF-IDF分数 ( 一个考虑了词频与逆文本频率的分数,如果一个词在文本中未出现,该分数为0 )。
那么上面三个文本对应的向量大概长这个样子:
如果一个查询请求是:
Q:"偷袭" and"不讲武德"
这个查询请求也会被映射到同样的向量空间中。其对应的向量为:
“距离”的度量方式为:
$ f(Q,x)=\left{ \begin{aligned}&cos(Q, x),\ \ if\ 偷袭\in x\ and\ 不讲武德\in x\ \ \ \ (1)\ &0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if\ 偷袭\notin x\ or\ 不讲武德\notin x\ \ \ \ \ \ \ (2)\end{aligned} \right. $
这个值越大,x与Q越相似。本例中,与查询语句最相似的文本为B。Lucene在工程实现层面对上述模型做了大量优化。如我们所熟知的倒排索引作用于上式的条件(2),这类似一个剪枝的过程:如果一个必要的关键字没有出现,那么该文本与查询语句的相似度为0。既然一定不会出现在最终的搜索结果中,那就没有必要进行后续的距离计算。
上图总结了这个简化的模型,向量空间以各词语 ( term ) 作为坐标基。关键字搜索分为两个阶段。首先是原始数据到向量空间的映射过程。文本按词语统计词频 ( TF )、逆文档频率 ( IDF ),并计算各词语上的TF-IDF值。查询语句则按谓词中出现的词语 ( 如"偷袭"、"不讲武德" ) 映射至向量空间。其次是相似性分析。基于倒排索引加速向量空间内的搜索过程和距离计算过程,找出与查询语句向量相似的数据向量。
模型的基础部分面向文本搜索进行了特化设计。包括
可以明显的看出,文本搜索以"显式"的语义为基础,模型层面和工程层面大体上都基于"词"这个概念进行构建。这对于文本搜索是自然的,整个搜索过程对于"人"也是好理解的。但相同的模型很难适用于更广泛的非结构化数据搜索。其中面临的问题主要有两个:
由多个维度的非结构化数据所驱动的数据搜索已经变得越来越普遍。在用户的业务中,我们观察到越来越多的搜索场景都需要解决好上述两个问题,除了上面提到的视频推荐,还包括药物筛选、人脸识别、辅助设计、商品推荐等。
为了在这些搜索场景上获得更好的效果,新兴的搜索技术在可解释性与准确性之间给出了新的权衡。以神经网络、embedding为代表的新技术更多的考虑了后者。
这些技术在主体思路上与文本搜索一致,都是将查询的输入与搜索内容映射至具有相同语义的向量空间,并在这个空间内根据距离进行相似度分析。而差异在于,向量空间所对应的是隐式语义,向量空间着重于对语义相似性的准确刻画,但不再具有易解读的性质。
对应视频推荐的例子,典型的做法是将不同维度的特征进行汇总,并基于这些信息训练神经网络,分别以神经网络的中间层参数、中间层输出作为视频embedding、用户embedding。基于数据训练得到的神经网络对应着用户、视频两类对象到向量空间的映射函数,这个映射函数的训练目标是最小化语义相似性的误差,但不论是映射函数还是向量空间,都不具有良好的可解释性。
一个具有泛化能力的非结构化数据搜索系统应该具备两个特征:
我们给出的泛化模型如上图所示。与前面讲到的文本搜索模型相比,这个模型在结构上的明显区别是将"数据到向量空间的映射函数"从搜索引擎内移到了搜索引擎外。即图中"Mapping to vector space"的这部分 ( 一般对应机器学习领域的encoder )。
这个选型的背后原因主要来自于工程层面。首先需要考虑的问题是数据类型爆炸。与传统的数值类型不同,当前的非结构化数据大多与业务场景直接相关,且数据类型的抽象程度非常低。这就造成了一个问题,即非结构化数据的种类是随着各个领域的数字化程度加深而与日俱增的。如果将映射函数内置于搜索引擎,就意味着搜索引擎在设计上需要考虑各类非结构化数据的具体语义。这一点所引发的系统复杂性增长,几乎是致命的。我们在项目早期尝试过将一些典型场景下的典型数据类型引入搜索引擎,但依然发现这在工程层面非常困难,很难通过一套简洁的框架来处理这些语义迥异但抽象程度又较低的数据类型。
其次需要考虑的问题是数据到向量空间的映射多样性。由于现在的搜索场景越来越复杂,所引入的数据处理方法与模型也越来越丰富。所需要的函数能力远超搜索引擎内置函数或自定义函数插件的能力范围。目前常见的做法是依靠大数据处理与AI两个生态上的工具来完成原始数据到向量空间的映射,如Spark、Pytorch、Tensorflow、Keras等。因此,将映射函数移至搜索引擎外,实际上决定了搜索引擎与大数据系统生态、AI系统生态的对接关系。
值得注意的是,虽然映射的部分有丰富的系统生态做支撑,但在应对具体的搜索问题时,仍然需要做很多定向的开发。这一点,并没有像搜索引擎的内置函数或UDF那样便利。以我们目前的经验来看,垂直领域内的典型场景是可以抽象出很多公共的处理流程的。我们也高兴的发现,当前一些开源项目已经着手补全这些拼图,如JINA等。
在剥离出"数据到向量空间的映射函数"后,搜索引擎的数据类型变得非常简洁,在传统的抽象类型之上,我们只需增加一类抽象类型 --- 向量。在搜索引擎内部,主要考虑向量空间上的操作,包括向量的存储、距离的计算、搜索过程的优化。由于映射过程完全透明,搜索引擎不依赖"映射语义" ( 如文本搜索中某个词会被映射至某个维度 ) 对搜索过程进行优化。所采用的思路是直接基于"相似性语义"构建索引系统。以向量间的两两"距离"作为度量,搜索引擎将向量按聚类或图组织成索引。相应的搜索过程对应着聚类的部分遍历或图的部分遍历。
总结下来,泛化的模型的主要特点如下:
我们从向量空间的角度出发,分析了文本搜索模型,并结合当前的搜索场景,讨论了搜索能力泛化所需解决的问题,最后给出了泛化的非结构化数据搜索模型。
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/6RmeV07enVT4AR8i6Rk1Fg
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。