火山引擎的数据质量平台是在多年服务字节跳动今日头条、抖音等业务的过程中打磨出来的。面对今日头条、抖音等不同产品线的复杂数据质量场景,数据质量平台如何满足多样的需求?
本文将介绍火山引擎数据质量平台是如何弥合大数据场景下数据质量校验与计算消耗资源大、校验计算时间长的冲突,并介绍数据质量平台是如何用一套架构框架来满足流批方面的数据质量监控。
广义上来说,数据质量的定义是数据满足一组固有特性(质量维度)要求的程度。业界通常有 6 个维度:
我们对数据质量有一些流程和规范,并针对上述一些维度开发了一套数据质量平台,主要关注数据质量及其生产链路。
上图展示了在数据开发的流程中,数据质量平台可以提供哪些功能:
数据质量平台最有代表性的功能是:对数据开发平台产出的 Hive 表数据进行主键重复检测,如果存在重复则进行报警。
数据质量监控最有用的场景是防止数据问题蔓延到下游。举个例子:数据任务产出一张 Hive 表,该表可能会同步一些信息到 Hive metastore(HMS)。HMS 的主从架构可能存在一定的延迟,假设 HMS 出现问题,下游任务可能会读到脏数据,这时如果我们使用数据质量监控,就能及时发现问题,阻止下游任务运行。
目前我们的数据质量挑战有哪些?可以通过几个用户 case 了解一下。
User Story 1
某流量级产品商业化系统,M 级日志条数/秒;希望秒级监控日志延迟、关键字段空值,T+1 检测日志波动率。
User Story 2
某内部业务系统,日志存储 ES;希望每 5 分钟检测上一周期日志波动情况。
User Story 3
某内部指标平台,业务数据由 Hive 定期同步到 ClickHouse;希望每次同步任务后检查 Hive 与 ClickHouse 中的指标是否一致。
通过上面的介绍,大家应该也大致清楚了当前数据质量需要解决的问题。可能有些同学会说,数据质量平台我也做过,问题归总起来也不复杂,总而言之就是对数据进行各种计算,对比计算来的阈值即可,一般直接依赖于 Spark 引擎或者 Hive 引擎计算即可。确实,其实这也是我们数据质量最开始的样子。那为什么会演化到目前这样,我们面临了一些什么问题?
首先是场景需求非常复杂:
此外,字节跳动各种产品会产出海量的日志数据,我们需要用有限的资源来满足大家对质量监控的需求。
面临这些挑战,我们的解决方案是什么?
火山引擎流批数据质量解决方案有 4 个大的功能:
上图是数据质量平台的系统架构图,主要分为 5 个部分:
Scheduler:外部调度器,触发离线监控。主要分两种类型:
对外提供 API 调用任务;
定时调度,通过 calljob 调用数据。
Backend:后端服务,偏服务层,处理业务逻辑。主要负责:
质量平台和外部的交互,所有 API 响应都是通过这一层进行;
任务提交:用户在质量平台配置的规则会放到业务存储,Scheduler 被调用后,Backend 会将任务相关的参数配置进行任务提交;
获取质量监控的结果并进行判断,然后和外部系统进行交互,在需要时发送警报通知用户。
Executor:平台核心的任务执行模块,集成了一些引擎,例如数据探查使用 OLAP 引擎。质量监控部分使用 Griffin 的 Measure 进行数据统计。
Monitor:是一个相对独立的模块,主要进行状态服务的流转,提供重复报警等功能。
Alert Center:质量平台强依赖于该平台。它是外部报警服务,接收各种报警事件。
离线数据检测流程
下面看一下离线数据的检测流程。
离线数据的监控、探查、对比的执行流程一致,主要分为 4 步:
我们总结了一下数据质量平台的优势:
当然任何一个工具都不可能是完美的,数据质量平台暂时还有一些待提升的地方:
流式监控执行
对于流式数据的监控,我们选择了 Flink 引擎,因为流式数据不同于离线数据,不能用快照的方式低成本拿到过程。所以我们要依赖一些外部的时序数据库再加规则引擎来展示对数据的监控。
平台上流式数据监控的流程为:
下面着重介绍两个模块的实现。
Executor 是基于 Apache Griffin 的 Measure 模块改造的一个 Spark Application。功能包括:
Executor 的选型有以下几方面的考虑:
考虑到以上方面的信息,我们选用了 Apache Griffin 的 Measure 模块作为 Executor。它基于 Spark 开发,能够适配不同的数据源,并且对于 DSL 做了一系列拓展。基于平台的设计,我们需要和 Backend 进行较多的互动,并把数据进行回传。其实 Griffin Measure 本身就支持了一些基本的数据质量监控,比如重复值检测、自定义 SQL 等等,这里重点说明一下我们对 Measure 模块的改造:
Monitor 模块主要是为了实现失败报警重试和重复报警功能,根据事件类型触发相应事件(重复报警、失败重试等)。因为业务数据全部存储在 MySQL,平台之前的 Monitor 重复报警做的也比较简单,即直接通过轮询的方式从 MySQL 中轮询拉起已报警实例,然后通过重复提交的方式进行报警。
随着监控的规则越来越多,库的压力会非常大,Monitor 的扫描也遇到了一些瓶颈,因此我们对 Monitor 进行了技术架构升级,具体改造内容包括:
前面介绍了数据质量平台的一些实现方式,下面为大家介绍一些我们在数据量和资源这两个方面的最佳实践。
内部的离线监控中,表行数的监控占比非常大,可能至少 50% 以上的离线规则都是表行数的监控。对于表行数,之前我们是通过 Spark,Select Count* 提交作业,对资源的消耗非常大。
后来我们对其做了一些优化。在任务提交的过程中,底层引擎在产出表的过程中将表行数记录写入相应分区信息中,我们就可以直接从 HMS 分区里直接获取表行数信息,从而避免了 Spark 任务的提交。
优化后的效果非常明显,目前对于表行数的监控,HMS 获取行数占比约 90 %,HMS 行数监控平均运行时长在秒级别。
注:这个功能需要推动底层服务配合支持,比如 Spark 需要把保存在本地 metric 里面的信息写入到 HMS 中,其他数据传输系统也需要支持。
这一块是基于 Griffin 的 Measure 来进行,Measure 本身有丰富的功能,我们对其进行了裁剪以节约耗时。主要的裁剪和优化包括:
另外,我们也对离线监控的执行参数进行了优化,主要包括:
举个例子:用户写了 SQL 进行数据的 join,执行引擎可以分析出执行计划。对于 join 类的操作,shuffle 可能非常大,这种情况下我们默认会开一些 Spark 参数。
根据表行数来预判数据表的大小,如果判断数据表比较大,会默认微调 vcore 和 memory。以上这些优化都能在一定程度上提升性能,目前平台上各类监控的平均运行时长缩短了 10% 以上。
平台上很多数据表和业务表(除了日志表以外),在数仓上层的表监控数据量不是很大,这种情况很适合进行 OLAP 的查询。
这种情况下我们在数据探查场景引入了 presto。之前在该场景下通过 Spark 做探查,引入 presto 之后通过快速 fail 机制,大数据量、计算复杂的探查任务 fallback 到提交 Spark 作业,探查时间中位数从之前的 7min 缩短到目前的不到 40s,效果非常显著。
Kafka 数据抽样
一般流式数据的问题都是通用性问题,可以通过数据采样发现问题。因此我们开发了数据采样的功能,减少数据资源的占比消耗。Flink Kafka Connector 支持抽样,可直接操作 kafka topic 的 offset 来达到抽样的目的。比如,我们按照 1% 的比例进行抽样,原来上 W 个 partition 的 Topic,我们只需要 ** 个机器就可以支撑。
单 Topic 多 Rule 优化
最早的时候我们是对一个 Topic 定义一个 Rule,然后开启一个 Flink 任务进行消费,执行 Rule。后来我们发现一些关键的数据需要对多个维度进行监控,也就是要定义多个维度的 Rule,对每一条 Rule 都开任务去消费是非常耗资源的,所以我们利用监控不是 CPU 密集型作业的特性,复用读取部分,单 slot 中执行多个 Rule,对 Topic 级别进行单一消费,在一个任务中把相关 Rule 都执行完。
本文介绍了数据质量平台的实现和最佳实践,最后谈谈平台未来的演进方向。
Q:数据质量问题的排查很多时候时间成本非常高,你们在数据质量问题的归因分析上有做什么工作吗?
A:这个问题是非常核心的痛点。这里可以介绍下目前我们的思路:联合字节跳动算法的同学做数据下钻,也就是对数据链路的每一张表都进行数据探查。如果发现质量问题,通过一些类似于血缘和字段的关系找到数据上游的字段。目前我们在做的还是这样偏探查+流程的方式去尽快了解上游数据,归因分析这部分暂时还没有什么进展。
Q:数据质量闭环是如何做的:比如数据质量问题由谁来解决?数据质量如何衡量?
A:数据质量问题谁来解决?谁在关注数据质量,谁去 push 推进,谁开发了数据,谁去解决数据质量问题。这是一个协作上的问题。
如何衡量数据质量?我们内部有一些可治理的指标,比如报警量、核心任何的报警率等。
Q:如何保证端到端数据一致性?
A:端到端数据一致性不是一个单一的工具能解决的,可能需要一些方案,比如:从端上上报的数据,结合埋点系统做数据校验,在发版的时候确定数据是准确的。但是我认为端到端数据一致性目前整个行业都还做的比较欠缺,业务端如果出现了问题,是很难排查的。如果对数据链路的每一层都做监控,可能问题排查起来会相对简单一些,但这种做法代价又比较大。
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/3Jbw0ZimtvQH6RbXm4-PZw
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。