全链路追踪技术的两个核心要素分别是 全链路信息获取 和 全链路信息存储展示。
Node.js 应用也不例外,这里将分成两篇文章进行介绍;第一篇介绍 Node.js 应用全链路信息获取, 第二篇介绍 Node.js 应用全链路信息存储展示。
目前行业内, 不考虑 Serverless 的情况下,主流的 Node.js 架构设计主要有以下两种方案:
上述两种方案对应的架构说明图如下图所示:
在上述两种通用架构中,nodejs 都会面临一个问题,那就是:
在请求链路越来越长,调用服务越来越多,其中还包含各种微服务调用的情况下,出现了以下诉求:
我们要解决上述诉求,就需要有一种技术,将每个请求的关键信息聚合起来,并且将所有请求链路串联起来。让我们可以知道一个请求中包含了几次服务、微服务请求的调用,某次服务、微服务调用在哪个请求的上下文。
这种技术,就是Node.js应用全链路追踪。它是 Node.js 在涉及到复杂服务端业务场景中,必不可少的技术保障。
综上,我们需要Node.js应用全链路追踪,说完为什么需要后,下面将介绍如何做Node.js应用的全链路信息获取。
全链路信息获取,是全链路追踪技术中最重要的一环。只有打通了全链路信息获取,才会有后续的存储展示流程。
对于多线程语言如 Java 、 Python 来说,做全链路信息获取有线程上下文如 ThreadLocal 这种利器相助。而对于Node.js来说,由于单线程和基于IO回调的方式来完成异步操作,所以在全链路信息获取上存在天然获取难度大的问题。那么如何解决这个问题呢?
由于 Node.js 单线程,非阻塞 IO 的设计思想。在全链路信息获取上,到目前为止,主要有以下 4 种方案:
而上述 4 个方案中, domain 由于存在严重的内存泄漏,已经被废弃了;zone.js 实现方式非常暴力、API比较晦涩、最关键的缺点是 monkey patch 只能 mock api ,不能 mock language;显式传递又过于繁琐和具有侵入性;综合比较下来,效果最好的方案就是第四种方案,这种方案有如下优点:
优点说完了,下面我们就来介绍如何通过 Async Hooks 来获取全链路信息。
Async Hooks 是 Node.js v8.x 版本新增加的一个核心模块,它提供了 API 用来追踪 Node.js 中异步资源的生命周期,可帮助我们正确追踪异步调用的处理逻辑及关系。在代码中,只需要写 import asyncHook from 'async_hooks' 即可引入 async_hooks 模块。
一句话概括:async_hooks 用来追踪 Node.js 中异步资源的生命周期。
目前 Node.js 的稳定版本是 v14.17.0 。我们通过一张图看下 Async Hooks 不同版本的 api 差异。如下图所示:
从图中可以看到该 api 变动较大。这是因为从 8 版本到 14 版本,async_hooks 依旧还是 Stability: 1 - Experimental
Stability: 1 - Experimental :该特性仍处于开发中,且未来改变时不做向后兼容,甚至可能被移除。不建议在生产环境中使用该特性。
但是没关系,要相信官方团队,这里我们的全链路信息获取方案是基于 Node v9.x 版本 api 实现的。对于 Async Hooks api 介绍和基本使用, 大家可以阅读官方文档,下文会阐述对核心知识的理解。
下面我们将系统介绍基于 Async Hooks 的全链路信息获取方案的设计和实现,下文统称为 zone-context 。
在介绍 zone-context 之前,要对 async_hooks 的核心知识有正确的理解,这里做了一个总结,有如下6点:
上述6点知识对于理解 async_hooks 是非常重要的。正是因为这些特性,才使得 async_hooks 能够优秀的完成Node.js 应用全链路信息获取。
到这里,下面就要介绍 zone-context 的设计和实现了,请和我一起往下看。
整体架构设计如下图所示:
核心逻辑如下:异步资源(调用)创建后,会被 async_hooks 监听到。监听到后,对获取到的异步资源信息进行处理加工,整合成需要的数据结构,整合后,将数据存储到 invoke tree 中。在异步资源结束时,触发 gc 操作,对 invoke tree 中不再有用的数据进行删除回收。
从上述核心逻辑中,我们可以知道,此架构设计需要实现以下三个功能:
下面开始逐个介绍上述三个功能的实现。
如何做到监听异步调用呢?
这里用到了 async_hooks (追踪 Node.js 异步资源的生命周期)代码实现如下:
asyncHook
.createHook({
init(asyncId, type, triggerAsyncId) {
// 异步资源创建(调用)时触发该事件
},
})
.enable()
是不是发现此功能实现非常简单,是的哦,就可以对所有异步操作进行追踪了。
在理解 async_hooks 核心知识中,我们提到了通过 asyncId 和 triggerAsyncId 可以追踪整个异步的调用关系及链路。现在大家看 init 中的参数,会发现, asyncId 和triggerAsyncId 都存在,而且是隐式传递,不需要手动传入。这样,我们在每次异步调用时,都能在 init 事件中,拿到这两个值。invoke tree 功能的实现,离不开这两个参数。
介绍完异步调用监听,下面将介绍 invoke tree 的实现。
5.3.1 设计
invoke tree 整体设计思路如下图所示:
具体代码如下:
interface ITree {
[key: string]: {
// 调用链路上第一个异步资源asyncId
rootId: number
// 异步资源的triggerAsyncId
pid: number
// 异步资源中所包含的异步资源asyncId
children: Array<number>
}
}
const invokeTree: ITree = {}
创建一个大的对象 invokeTree, 每一个属性代表一个异步资源的完整调用链路。属性的key和value代表含义如下:
通过这种设计,就能拿到任何一个异步资源在整个请求链路中的关键信息。收集根节点上下文。
5.3.2 和异步调用监听结合
虽然 invoke tree 设计好了。但是如何在 异步调用监听的 init 事件中,将 asyncId 、 triggerAsyncId 和 invokeTree 关联起来呢?
代码如下:
asyncHook
.createHook({
init(asyncId, type, triggerAsyncId) {
// 寻找父节点
const parent = invokeTree[triggerAsyncId]
if (parent) {
invokeTree[asyncId] = {
pid: triggerAsyncId,
rootId: parent.rootId,
children: [],
}
// 将当前节点asyncId值保存到父节点的children数组中
invokeTree[triggerAsyncId].children.push(asyncId)
}
}
})
.enable()
大家看上面代码,整个代码大致有以下几个步骤:
至此,invoke tree 的设计、和异步调用监听如何结合,已经介绍完了。下面将介绍 gc 功能的设计和实现。
5.4.1 目的
我们知道,异步调用次数是非常多的,如果不做 gc 操作,那么 invoke tree 会越来越大,node应用的内存会被这些数据慢慢占满,所以需要对 invoke tree 进行垃圾回收。
5.4.2 设计
gc 的设计思想主要如下:当异步资源结束的时候,触发垃圾回收,寻找此异步资源触发的所有异步资源,然后按照此逻辑递归查找,直到找出所有可回收的异步资源。
话不多说,直接上代码, gc 代码如下:
interface IRoot {
[key: string]: Object
}
// 收集根节点上下文
const root: IRoot = {}
function gc(rootId: number) {
if (!root[rootId]) {
return
}
// 递归收集所有节点id
const collectionAllNodeId = (rootId: number) => {
const {children} = invokeTree[rootId]
let allNodeId = [...children]
for (let id of children) {
// 去重
allNodeId = [...allNodeId, ...collectionAllNodeId(id)]
}
return allNodeId
}
const allNodes = collectionAllNodeId(rootId)
for (let id of allNodes) {
delete invokeTree[id]
}
delete invokeTree[rootId]
delete root[rootId]
}
gc 核心逻辑:用 collectionAllNodeId 递归查找所有可回收的异步资源( id )。然后再删除 invokeTree 中以这些 id 为 key 的属性。最后删除根节点。
大家看到了声明对象 root ,这个是什么呢?
root 其实是我们对某个异步调用进行监听时,设置的一个根节点对象,这个节点对象可以手动传入一些链路信息,这样可以为全链路追踪增加其他追踪信息,如错误信息、耗时时间等。
我们的异步事件监听设计好了, invoke tree 设计好了,gc 也设计好了。那么如何将他们串联起来呢?比如我们要监听某一个异步资源,那么我们要怎样才能把 invoke tree 和异步资源结合起来呢?
这里需要三个函数来完成结合,分别是 ZoneContext 、 setZoneContext 、 getZoneContext。下面来一一介绍下这三个函数:
5.5.1 ZoneContext
这是一个工厂函数,用来创建异步资源实例的,代码如下所示:
// 工厂函数
async function ZoneContext(fn: Function) {
// 初始化异步资源实例
const asyncResource = new asyncHook.AsyncResource('ZoneContext')
let rootId = -1
return asyncResource.runInAsyncScope(async () => {
try {
rootId = asyncHook.executionAsyncId()
// 保存 rootId 上下文
root[rootId] = {}
// 初始化 invokeTree
invokeTree[rootId] = {
pid: -1, // rootId 的 triggerAsyncId 默认是 -1
rootId,
children: [],
}
// 执行异步调用
await fn()
} finally {
gc(rootId)
}
})
}
大家会发现,在此函数中,有这样一行代码:
const asyncResource = new asyncHook.AsyncResource('ZoneContext')
这行代码是什么含义呢?
它是指我们创建了一个名为 ZoneContext 的异步资源实例,可以通过该实例的属性方法来更加精细的控制异步资源。
执行 asyncResource.runInAsyncScope 方法有什么用处呢?
调用该实例的 runInAsyncScope方法,在runInAsyncScope 方法中包裹要传入的异步调用。可以保证在这个资源( fn )的异步作用域下,所执行的代码都是可追踪到我们设置的 invokeTree 中,达到更加精细控制异步调用的目的。在执行完后,进行gc调用,完成内存回收。
5.5.2 setZoneContext
用来给异步调用设置额外的跟踪信息。代码如下:
function setZoneContext(obj: Object) {
const curId = asyncHook.executionAsyncId()
let root = findRootVal(curId)
Object.assign(root, obj)
}
通过 Object.assign(root, obj) 将传入的 obj 赋值给 root 对象中, key 为 curId 的属性。这样就可以给我们想跟踪的异步调用设置想要跟踪的信息。
5.5.3 getZoneContext
用来拿到异步调的 rootId 的属性值。代码如下:
function findRootVal(asyncId: number) {
const node = invokeTree[asyncId]
return node ? root[node.rootId] : null
}
function getZoneContext() {
const curId = asyncHook.executionAsyncId()
return findRootVal(curId)
}
通过给 findRootVal 函数传入 asyncId 来拿到 root 对象中 key 为 rootId 的属性值。这样就可以拿到当初我们设置的想要跟踪的信息了,完成一个闭环。
至此,我们将 Node.js应用全链路信息获取的核心设计和实现阐述完了。逻辑上有点抽象,需要多去思考和理解,才能对全链路追踪信息获取有一个更加深刻的掌握。
最后,我们使用本次全链路追踪的设计实现来展示一个追踪 demo 。
5.6.1 确定异步调用嵌套关系
为了更好的阐述异步调用嵌套关系,这里进行了简化,没有输出 invoke tree 。例子代码如下:
// 对异步调用A函数进行追踪
ZoneContext(async () => {
await A()
})
// 异步调用A函数中执行异步调用B函数
async function A() {
// 输出 A 函数的 asyncId
fs.writeSync(1, `A 函数的 asyncId -> ${asyncHook.executionAsyncId()}\n`)
Promise.resolve().then(() => {
// 输出 A 函数中执行异步调用时的 asyncId
fs.writeSync(1, `A 执行异步 promiseC 时 asyncId 为 -> ${asyncHook.executionAsyncId()}\n`)
B()
})
}
// 异步调用B函数中执行异步调用C函数
async function B() {
// 输出 B 函数的 asyncId
fs.writeSync(1, `B 函数的 asyncId -> ${asyncHook.executionAsyncId()}\n`)
Promise.resolve().then(() => {
// 输出 B 函数中执行异步调用时的 asyncId
fs.writeSync(1, `B 执行异步 promiseC 时 asyncId 为 -> ${asyncHook.executionAsyncId()}\n`)
C()
})
}
// 异步调用C函数
function C() {
const obj = getZoneContext()
// 输出 C 函数的 asyncId
fs.writeSync(1, `C 函数的 asyncId -> ${asyncHook.executionAsyncId()}\n`)
Promise.resolve().then(() => {
// 输出 C 函数中执行异步调用时的 asyncId
fs.writeSync(1, `C 执行异步 promiseC 时 asyncId 为 -> ${asyncHook.executionAsyncId()}\n`)
})
}
输出结果为:
A 函数的 asyncId -> 3
A 执行异步 promiseA 时 asyncId 为 -> 8
B 函数的 asyncId -> 8
B 执行异步 promiseB 时 asyncId 为 -> 13
C 函数的 asyncId -> 13
C 执行异步 promiseC 时 asyncId 为 -> 16
只看输出结果就可以推出以下信息:
至此,我们可以清晰快速的知道谁被谁调用,谁又调用了谁。
5.6.2 额外设置追踪信息
在上面例子代码的基础下,增加以下代码:
ZoneContext(async () => {
const ctx = { msg: '全链路追踪信息', code: 1 }
setZoneContext(ctx)
await A()
})
function A() {
// 代码同上个demo
}
function B() {
// 代码同上个demo
D()
}
// 异步调用C函数
function C() {
const obj = getZoneContext()
Promise.resolve().then(() => {
fs.writeSync(1, `getZoneContext in C -> ${JSON.stringify(obj)}\n`)
})
}
// 同步调用函数D
function D() {
const obj = getZoneContext()
fs.writeSync(1, `getZoneContext in D -> ${JSON.stringify(obj)}\n`)
}
输出以下内容:
呈现代码宏出错:参数
'com.atlassian.confluence.ext.code.render.InvalidValueException'的值无效。
getZoneContext in D -> {"msg":"全链路追踪信息","code":1}
getZoneContext in C-> {"msg":"全链路追踪信息","code":1}
可以发现, 执行 A 函数前设置的追踪信息后,调用 A 函数, A 函数中调用 B 函数, B 函数中调用 C 函数和 D 函数。在 C 函数和 D 函数中,都能访问到设置的追踪信息。
这说明,在定位分析嵌套的异步调用问题时,通过 getZoneContext 拿到顶层设置的关键追踪信息。可以很快回溯出,某个嵌套异步调用出现的异常,
是由顶层的某个异步调用异常所导致的。
5.6.3 追踪信息大而全的 invoke tree
例子代码如下:
ZoneContext(async () => {
await A()
})
async function A() {
Promise.resolve().then(() => {
fs.writeSync(1, `A 函数执行异步调用时的 invokeTree -> ${JSON.stringify(invokeTree)}\n`)
B()
})
}
async function B() {
Promise.resolve().then(() => {
fs.writeSync(1, `B 函数执行时的 invokeTree -> ${JSON.stringify(invokeTree)}\n`)
})
}
输出结果如下:
A 函数执行异步调用时的 invokeTree -> {"3":{"pid":-1,"rootId":3,"children":[5,6,7]},"5":{"pid":3,"rootId":3,"children":[10]},"6":{"pid":3,"rootId":3,"children":[9]},"7":{"pid":3,"rootId":3,"children":[8]},"8":{"pid":7,"rootId":3,"children":[]},"9":{"pid":6,"rootId":3,"children":[]},"10":{"pid":5,"rootId":3,"children":[]}}
B 函数执行异步调用时的 invokeTree -> {"3":{"pid":-1,"rootId":3,"children":[5,6,7]},"5":{"pid":3,"rootId":3,"children":[10]},"6":{"pid":3,"rootId":3,"children":[9]},"7":{"pid":3,"rootId":3,"children":[8]},"8":{"pid":7,"rootId":3,"children":[11,12]},"9":{"pid":6,"rootId":3,"children":[]},"10":{"pid":5,"rootId":3,"children":[]},"11":{"pid":8,"rootId":3,"children":[]},"12":{"pid":8,"rootId":3,"children":[13]},"13":{"pid":12,"rootId":3,"children":[]}}
根据输出结果可以推出以下信息:
1、此异步调用链路的 rootId (初始 asyncId ,也是顶层节点值) 是 3
2、函数执行异步调用时,其调用链路如下图所示:
3、函数执行异步调用时,其调用链路如下图所示:
从调用链路图就可以清晰看出所有异步调用之间的相互关系和顺序。为异步调用的各种问题排查和性能分析提供了强有力的技术支持。
到这,关于Node.js 应用全链路信息获取的设计、实现和案例演示就介绍完了。全链路信息获取是全链路追踪系统中最重要的一环,当信息获取搞定后,下一步就是全链路信息存储展示。
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/YURkzS8AaOjxpz61SAkIjw
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。