实现DCI架构

发表于 2年以前  | 总阅读数:308 次

前言

在面向对象编程的理念里,应用程序是对现实世界的抽象,我们经常会将现实中的事物建模为编程语言中的类/对象(“是什么”),而事物的行为则建模为方法(“做什么”)。面向对象编程有三大基本特性(封装、继承/组合、多态)和五大基本原则(单一职责原则、开放封闭原则、里氏替换原则、依赖倒置原则、接口分离原则),但知道这些还并不足以让我们设计出好的程序,于是很多方法论就涌现了出来。

近来最火的当属领域驱动设计(DDD),其中战术建模提出的实体、值对象、聚合等建模方法,能够很好的指导我们设计出符合现实世界的领域模型。但DDD也不是万能的,在某些应用场景下,按照传统的战术建模/面向对象方法设计出来的程序,也会存在可维护性差、违反单一职责原则等问题。

本文介绍的DCI建模方法可以看成是战术建模的一种辅助,在某些场景下,它可以很好的弥补DDD战术建模的一些缺点。接下来,我们将会通过一个案例来介绍DCI是如何解决DDD战术建模的这些缺点的。

本文涉及的代码归档在github项目:https://github.com/ruanrunxue/DCI-Architecture-Implementation

案例

考虑一个普通人的生活日常,他会在学校上课,也会趁着暑假去公司工作,在工作之余去公园游玩,也会像普通人一样在家吃喝玩乐。当然,一个人的生活还远不止这些,为了讲解方便,本文只针对这几个典型的场景进行建模示例。

使用DDD建模

按照DDD战术建模的思路,首先,我们会列出该案例的通用语言

人、身份证、银行卡、家、吃饭、睡觉、玩游戏、学校、学生卡、学习、考试、公司、工卡、上班、下班、公园、购票、游玩

接着,我们使用战术建模技术(值对象实体聚合领域服务资源库)对通用语言进行领域建模。

DDD建模后的代码目录结构如下:

- aggregate: 聚合
  - company.go
  - home.go
  - park.go
  - school.go
- entity: 实体
  - people.go
- vo: 值对象
  - account.go
  - identity_card.go
  - student_card.go
  - work_card.go

我们将身份证、学生卡、工卡、银行卡这几个概念,建模为值对象(Value Object):

package vo

// 身份证
type IdentityCard struct {
 Id   uint32
 Name string
}

// 学生卡
type StudentCard struct {
 Id     uint32
 Name   string
 School string
}

// 工卡
type WorkCard struct {
 Id      uint32
 Name    string
 Company string
}

// 银行卡
type Account struct {
 Id      uint32
 Balance int
}

...

接着我们将人建模成实体(Entity),他包含了身份证、学生卡等值对象,也具备吃饭、睡觉等行为:

package entity

// 人
type People struct {
 vo.IdentityCard
 vo.StudentCard
 vo.WorkCard
 vo.Account
}

// 学习
func (p *People) Study() {
 fmt.Printf("Student %+v studying\n", p.StudentCard)
}
// 考试
func (p *People) Exam() {
 fmt.Printf("Student %+v examing\n", p.StudentCard)
}
// 吃饭
func (p *People) Eat() {
 fmt.Printf("%+v eating\n", p.IdentityCard)
 p.Account.Balance--
}
// 睡觉
func (p *People) Sleep() {
 fmt.Printf("%+v sleeping\n", p.IdentityCard)
}
// 玩游戏
func (p *People) PlayGame() {
 fmt.Printf("%+v playing game\n", p.IdentityCard)
}
// 上班
func (p *People) Work() {
 fmt.Printf("%+v working\n", p.WorkCard)
 p.Account.Balance++
}
// 下班
func (p *People) OffWork() {
 fmt.Printf("%+v getting off work\n", p.WorkCard)
}
// 购票
func (p *People) BuyTicket() {
 fmt.Printf("%+v buying a ticket\n", p.IdentityCard)
 p.Account.Balance--
}
// 游玩
func (p *People) Enjoy() {
 fmt.Printf("%+v enjoying park scenery\n", p.IdentityCard)
}

最后,我们将学校、公司、公园、家建模成聚合(Aggregate),聚合由一个或多个实体、值对象组合而成,组织它们完成具体的业务逻辑:

package aggregate

// 家
type Home struct {
 me *entity.People
}
func (h *Home) ComeBack(p *entity.People) {
 fmt.Printf("%+v come back home\n", p.IdentityCard)
 h.me = p
}
// 执行Home的业务逻辑
func (h *Home) Run() {
 h.me.Eat()
 h.me.PlayGame()
 h.me.Sleep()
}

// 学校
type School struct {
 Name     string
 students []*entity.People
}
func (s *School) Receive(student *entity.People) {
 student.StudentCard = vo.StudentCard{
  Id:     rand.Uint32(),
  Name:   student.IdentityCard.Name,
  School: s.Name,
 }
 s.students = append(s.students, student)
 fmt.Printf("%s Receive stduent %+v\n", s.Name, student.StudentCard)
}
// 执行School的业务逻辑
func (s *School) Run() {
 fmt.Printf("%s start class\n", s.Name)
 for _, student := range s.students {
  student.Study()
 }
 fmt.Println("students start to eating")
 for _, student := range s.students {
  student.Eat()
 }
 fmt.Println("students start to exam")
 for _, student := range s.students {
  student.Exam()
 }
 fmt.Printf("%s finish class\n", s.Name)
}

// 公司
type Company struct {
 Name    string
 workers []*entity.People
}
func (c *Company) Employ(worker *entity.People) {
 worker.WorkCard = vo.WorkCard{
  Id:      rand.Uint32(),
  Name:    worker.IdentityCard.Name,
  Company: c.Name,
 }
 c.workers = append(c.workers, worker)
 fmt.Printf("%s Employ worker %s\n", c.Name, worker.WorkCard.Name)
}
// 执行Company的业务逻辑
func (c *Company) Run() {
 fmt.Printf("%s start work\n", c.Name)
 for _, worker := range c.workers {
  worker.Work()
 }
 fmt.Println("worker start to eating")
 for _, worker := range c.workers {
  worker.Eat()
 }
 fmt.Println("worker get off work")
 for _, worker := range c.workers {
  worker.OffWork()
 }
 fmt.Printf("%s finish work\n", c.Name)
}

// 公园
type Park struct {
 Name     string
 enjoyers []*entity.People
}
func (p *Park) Welcome(enjoyer *entity.People) {
 fmt.Printf("%+v come to park %s\n", enjoyer.IdentityCard, p.Name)
 p.enjoyers = append(p.enjoyers, enjoyer)
}
// 执行Park的业务逻辑
func (p *Park) Run() {
 fmt.Printf("%s start to sell tickets\n", p.Name)
 for _, enjoyer := range p.enjoyers {
  enjoyer.BuyTicket()
 }
 fmt.Printf("%s start a show\n", p.Name)
 for _, enjoyer := range p.enjoyers {
  enjoyer.Enjoy()
 }
 fmt.Printf("sh

那么,根据上述方法建模出来的模型是这样的:

模型的运行方法如下:

paul := entity.NewPeople("Paul")
mit := aggregate.NewSchool("MIT")
google := aggregate.NewCompany("Google")
home := aggregate.NewHome()
summerPalace := aggregate.NewPark("Summer Palace")
// 上学
mit.Receive(paul)
mit.Run()
// 回家
home.ComeBack(paul)
home.Run()
// 工作
google.Employ(paul)
google.Run()
// 公园游玩
summerPalace.Welcome(paul)
summerPalace.Run()

贫血模型 VS 充血模型(工程派 VS 学院派)

上一节中,我们使用DDD的战术建模完成了该案例领域模型。模型的核心是People实体,它有IdentityCardStudentCard等数据属性,也有Eat()Study()Work()等业务行为 ,非常符合现实世界中定义。这也是学院派所倡导的,同时拥有数据属性和业务行为的充血模型

然而,充血模型并非完美,它也有很多问题,比较典型的是这两个:

问题一:上帝类

People这个实体包含了太多的职责,导致它变成了一个名副其实的上帝类。试想,这里还是裁剪了很多“人”所包含的属性和行为,如果要建模一个完整的模型,其属性和方法之多,无法想象。上帝类违反了单一职责原则,会导致代码的可维护性变得极差

问题二:模块间耦合

SchoolCompany本应该是相互独立的,School不必关注上班与否,Company也不必关注考试与否。但是现在因为它们都依赖了People这个实体,School可以调用与Company相关的Work()OffWork()方法,反之亦然。这导致模块间产生了不必要的耦合,违反了接口隔离原则

这些问题都是工程派不能接受的,从软件工程的角度,它们会使得代码难以维护。解决这类问题的方法,比较常见的是对实体进行拆分,比如将实体的行为建模成领域服务,像这样:

type People struct {
 vo.IdentityCard
 vo.StudentCard
 vo.WorkCard
 vo.Account
}

type StudentService struct{}
func (s *StudentService) Study(p *entity.People) {
 fmt.Printf("Student %+v studying\n", p.StudentCard)
}
func (s *StudentService) Exam(p *entity.People) {
 fmt.Printf("Student %+v examing\n", p.StudentCard)
}

type WorkerService struct{}
func (w *WorkerService) Work(p *entity.People) {
 fmt.Printf("%+v working\n", p.WorkCard)
 p.Account.Balance++
}
func (w *WorkerService) OffWOrk(p *entity.People) {
 fmt.Printf("%+v getting off work\n", p.WorkCard)
}

// ...

这种建模方法,解决了上述两个问题,但也变成了所谓的贫血模型People变成了一个纯粹的数据类,没有任何业务行为。在人的心理上,这样的模型并不能在建立起对现实世界的对应关系,不容易让人理解,因此被学院派所抵制。

到目前为止,贫血模型和充血模型都有各有优缺点,工程派和学院派谁都无法说服对方。接下来,轮到本文的主角出场了。

DCI架构

DCI(Data,Context,Interactive)架构是一种面向对象的软件架构模式,在《The DCI Architecture: A New Vision of Object-Oriented Programming》一文中被首次提出。与传统的面向对象相比,DCI能更好地对数据和行为之间的关系进行建模,从而更容易被人理解。

  • Data,也即数据/领域对象,用来描述系统“是什么”,通常采用DDD中的战术建模来识别当前模型的领域对象,等同于DDD分层架构中的领域层。
  • Context,也即场景,可理解为是系统的Use Case,代表了系统的业务处理流程,等同于DDD分层架构中的应用层。
  • Interactive,也即交互,是DCI相对于传统面向对象的最大发展,它认为我们应该显式地对领域对象(Object)在每个业务场景(Context)中扮演(Cast)的角色(Role)进行建模。Role代表了领域对象在业务场景中的业务行为(“做什么”),Role之间通过交互完成完整的义务流程

这种角色扮演的模型我们并不陌生,在现实的世界里也是随处可见,比如,一个演员可以在这部电影里扮演英雄的角色,也可以在另一部电影里扮演反派的角色。

DCI认为,对Role的建模应该是面向Context的,因为特定的业务行为只有在特定的业务场景下才会有意义。通过对Role的建模,我们就能够将领域对象的方法拆分出去,从而避免了上帝类的出现。最后,领域对象通过组合或继承的方式将Role集成起来,从而具备了扮演角色的能力。

DCI架构一方面通过角色扮演模型使得领域模型易于理解,另一方面通过“小类大对象”的手法避免了上帝类的问题,从而较好地解决了贫血模型和充血模型之争。另外,将领域对象的行为根据Role拆分之后,模块更加的高内聚、低耦合了。

使用DCI建模

回到前面的案例,使用DCI的建模思路,我们可以将“人”的几种行为按照不同的角色进行划分。吃完、睡觉、玩游戏,是作为人类角色的行为;学习、考试,是作为学生角色的行为;上班、下班,是作为员工角色的行为;购票、游玩,则是作为游玩者角色的行为。“人”在这个场景中,充当的是人类的角色;在学校这个场景中,充当的是学生的角色;在公司这个场景中,充当的是员工的角色;在公园这个场景中,充当的是游玩者的角色。

需要注意的是,学生、员工、游玩者,这些角色都应该具备人类角色的行为,比如在学校里,学生也需要吃饭。

最后,根据DCI建模出来的模型,应该是这样的:

在DCI模型中,People不再是一个包含众多属性和方法的“上帝类”,这些属性和方法被拆分到多个Role中实现,而People由这些Role组合而成。

另外,SchoolCompany也不再耦合,School只引用了Student,不能调用与Company相关的WorkerWork()OffWorker()方法。

代码实现DCI模型

DCI建模后的代码目录结构如下;

- context: 场景
  - company.go
  - home.go
  - park.go
  - school.go
- object: 对象
  - people.go
- data: 数据
  - account.go
  - identity_card.go
  - student_card.go
  - work_card.go
- role: 角色
  - enjoyer.go
  - human.go
  - student.go
  - worker.go

从代码目录结构上看,DDD和DCI架构相差并不大,aggregate目录演变成了context目录;vo目录演变成了data目录;entity目录则演变成了objectrole目录。

首先,我们实现基础角色HumanStudentWorkerEnjoyer都需要组合它:

package role

// 人类角色
type Human struct {
 data.IdentityCard
 data.Account
}
func (h *Human) Eat() {
 fmt.Printf("%+v eating\n", h.IdentityCard)
 h.Account.Balance--
}
func (h *Human) Sleep() {
 fmt.Printf("%+v sleeping\n", h.IdentityCard)
}
func (h *Human) PlayGame() {
 fmt.Printf("%+v playing game\n", h.IdentityCard)
}

接着,我们再实现其他角色,需要注意的是,StudentWorkerEnjoyer不能直接组合Human,否则People对象将会有4个Human子对象,与模型不符:

// 错误的实现
type Worker struct {
 Human
}
func (w *Worker) Work() {
 fmt.Printf("%+v working\n", w.WorkCard)
 w.Balance++
}
...
type People struct {
 Human
 Student
 Worker
 Enjoyer
}
func main() {
 people := People{}
  fmt.Printf("People: %+v", people)
}
// 结果输出, People中有4个Human:
// People: {Human:{} Student:{Human:{}} Worker:{Human:{}} Enjoyer:{Human:{}}}

为解决该问题,我们引入了xxxTrait接口:

// 人类角色特征
type HumanTrait interface {
 CastHuman() *Human
}
// 学生角色特征
type StudentTrait interface {
 CastStudent() *Student
}
// 员工角色特征
type WorkerTrait interface {
 CastWorker() *Worker
}
// 游玩者角色特征
type EnjoyerTrait interface {
 CastEnjoyer() *Enjoyer
}

StudentWorkerEnjoyer组合HumanTrait,并通过Compose(HumanTrait)方法进行特征注入,只要在注入的时候保证Human是同一个,就可以解决该问题了。

// 学生角色
type Student struct {
 // Student同时也是个普通人,因此组合了Human角色
 HumanTrait
 data.StudentCard
}
// 注入人类角色特征
func (s *Student) Compose(trait HumanTrait) {
 s.HumanTrait = trait
}
func (s *Student) Study() {
 fmt.Printf("Student %+v studying\n", s.StudentCard)
}
func (s *Student) Exam() {
 fmt.Printf("Student %+v examing\n", s.StudentCard)
}

// 员工角色
type Worker struct {
 // Worker同时也是个普通人,因此组合了Human角色
 HumanTrait
 data.WorkCard
}
// 注入人类角色特征
func (w *Worker) Compose(trait HumanTrait) {
 w.HumanTrait = trait
}
func (w *Worker) Work() {
 fmt.Printf("%+v working\n", w.WorkCard)
 w.CastHuman().Balance++
}
func (w *Worker) OffWork() {
 fmt.Printf("%+v getting off work\n", w.WorkCard)
}

// 游玩者角色
type Enjoyer struct {
 // Enjoyer同时也是个普通人,因此组合了Human角色
 HumanTrait
}
// 注入人类角色特征
func (e *Enjoyer) Compose(trait HumanTrait) {
 e.HumanTrait = trait
}
func (e *Enjoyer) BuyTicket() {
 fmt.Printf("%+v buying a ticket\n", e.CastHuman().IdentityCard)
 e.CastHuman().Balance--
}
func (e *Enjoyer) Enjoy() {
 fmt.Printf("%+v enjoying scenery\n", e.CastHuman().IdentityCard)
}

最后,实现People这一领域对象:

package object

type People struct {
 // People对象扮演的角色
 role.Human
 role.Student
 role.Worker
 role.Enjoyer
}
// People实现了HumanTrait、StudentTrait、WorkerTrait、EnjoyerTrait等特征接口
func (p *People) CastHuman() *role.Human {
 return &p.Human
}
func (p *People) CastStudent() *role.Student {
 return &p.Student
}
func (p *People) CastWorker() *role.Worker {
 return &p.Worker
}
func (p *People) CastEnjoyer() *role.Enjoyer {
 return &p.Enjoyer
}
// People在初始化时,完成对角色特征的注入
func NewPeople(name string) *People {
  // 一些初始化的逻辑...
 people.Student.Compose(people)
 people.Worker.Compose(people)
 people.Enjoyer.Compose(people)
 return people
}

进行角色拆分之后,在实现HomeSchoolCompanyPark等场景时,只需依赖相应的角色即可,不再需要依赖People这一领域对象:

// 家
type Home struct {
 me *role.Human
}
func (h *Home) ComeBack(human *role.Human) {
 fmt.Printf("%+v come back home\n", human.IdentityCard)
 h.me = human
}
// 执行Home的业务逻辑
func (h *Home) Run() {
 h.me.Eat()
 h.me.PlayGame()
 h.me.Sleep()
}

// 学校
type School struct {
 Name     string
 students []*role.Student
}
func (s *School) Receive(student *role.Student) {
  // 初始化StduentCard逻辑 ...
 s.students = append(s.students, student)
 fmt.Printf("%s Receive stduent %+v\n", s.Name, student.StudentCard)
}
// 执行School的业务逻辑
func (s *School) Run() {
 fmt.Printf("%s start class\n", s.Name)
 for _, student := range s.students {
  student.Study()
 }
 fmt.Println("students start to eating")
 for _, student := range s.students {
  student.CastHuman().Eat()
 }
 fmt.Println("students start to exam")
 for _, student := range s.students {
  student.Exam()
 }
 fmt.Printf("%s finish class\n", s.Name)
}

// 公司
type Company struct {
 Name    string
 workers []*role.Worker
}
func (c *Company) Employ(worker *role.Worker) {
  // 初始化WorkCard逻辑 ...
  c.workers = append(c.workers, worker)
 fmt.Printf("%s Employ worker %s\n", c.Name, worker.WorkCard.Name)
}
// 执行Company的业务逻辑
func (c *Company) Run() {
 fmt.Printf("%s start work\n", c.Name)
 for _, worker := range c.workers {
  worker.Work()
 }
 fmt.Println("worker start to eating")
 for _, worker := range c.workers {
  worker.CastHuman().Eat()
 }
 fmt.Println("worker get off work")
 for _, worker := range c.workers {
  worker.OffWork()
 }
 fmt.Printf("%s finish work\n", c.Name)
}

// 公园
type Park struct {
 Name     string
 enjoyers []*role.Enjoyer
}
func (p *Park) Welcome(enjoyer *role.Enjoyer) {
 fmt.Printf("%+v come park %s\n", enjoyer.CastHuman().IdentityCard, p.Name)
 p.enjoyers = append(p.enjoyers, enjoyer)
}
// 执行Park的业务逻辑
func (p *Park) Run() {
 fmt.Printf("%s start to sell tickets\n", p.Name)
 for _, enjoyer := range p.enjoyers {
  enjoyer.BuyTicket()
 }
 fmt.Printf("%s start a show\n", p.Name)
 for _, enjoyer := range p.enjoyers {
  enjoyer.Enjoy()
 }
 fmt.Printf("show finish\n")
}

模型的运行方法如下:

paul := object.NewPeople("Paul")
mit := context.NewSchool("MIT")
google := context.NewCompany("Google")
home := context.NewHome()
summerPalace := context.NewPark("Summer Palace")

// 上学
mit.Receive(paul.CastStudent())
mit.Run()
// 回家
home.ComeBack(paul.CastHuman())
home.Run()
// 工作
google.Employ(paul.CastWorker())
google.Run()
// 公园游玩
summerPalace.Welcome(paul.CastEnjoyer())
summerPalace.Run()

写在最后

从前文所描述的场景中,我们可以发现传统的DDD/面向对象设计方法在对行为进行建模方面存在着不足,进而导致了所谓的贫血模型和充血模型之争

DCI架构的出现很好的弥补了这一点,它通过引入角色扮演的思想,巧妙地解决了充血模型中上帝类和模块间耦合问题,而且不影响模型的正确性。当然,DCI架构也不是万能的,在行为较少的业务模型中,使用DCI来建模并不合适。

最后,将DCI架构总结成一句话就是:领域对象(Object)在不同的场景(Context)中扮演(Cast)不同的角色(Role),角色之间通过交互(Interactive)来完成具体的业务逻辑

参考

1、The DCI Architecture: A New Vision of Object-Oriented Programming, Trygve Reenskaug & James O. Coplien

2、软件设计的演变过程, _张晓龙_

3、Implement Domain Object in Golang, _张晓龙_

4、DCI: 代码的可理解性, chelsea

5、DCI in C++, MagicBowen

本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/AD1-0htaGqnxZcUCxw7mNA

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237273次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8108次阅读
 目录