自C++11起,shared_ptr从boost转正进入标准库已有10年了。然而当C++程序员们在谈论shared_ptr是不是线程安全的的时候,还时常存在分歧。确实关于shared_ptr 的线程安全性不能直接了当地用安全或不安全来简单回答的,下面我来探讨一下。
先回顾一下线程安全这一概念的定义,以下摘录自维基百科:
Thread safety is a computer programming concept applicable to multi-threaded code. Thread-safe code only manipulates shared data structures in a manner that ensures that all threads behave properly and fulfill their design specifications without unintended interaction. There are various strategies for making thread-safe data structures.
主要表达的就是多线程操作一个共享数据的时候,能够保证所有线程的行为是符合预期的。
一般而言线程不安全的行为大多数出现了data race导致的,比如你调用了某个系统函数,而这个函数内部其实用到了静态变量,那么多线程执行该函数的时候,就会触发data race,造成结果不符合预期,严重的时候,甚至会导致core dump。
当然这里只是一个例子,线程不安全还可能由其他原因导致。
shared_ptr 可能的线程安全隐患大概有如下几种,一是引用计数的加减操作是否线程安全,二是shared_ptr修改指向时,是否线程安全。另外shared_ptr不是一个类,而是一个类模板,所以对于shared_ptr的T的并发操作的安全性,也会被纳入讨论范围。因此造成了探讨其线程安全性问题上的复杂性。
岔开个话题,前段时间我面试过几个校招生,每当我问到是否了解shared_ptr的时候,对方总能巴拉巴拉说出一大堆东西。会讲到引用计数、weak_ptr解决循环引用、自定义删除器的用法等等等等。感觉这些知识都是很八股的东西。我会立马打断去问一句:引用计数具体是怎么实现的?怎么做到多个shared_ptr之间的计数能共享,同步更新的呢?比如:
shared_ptr<A> sp1 = make_shared<A>();
...
shared_ptr<A> sp2 = sp1;
...
shared_ptr<A> sp3 = sp1;
当sp3出现的时候,sp2怎么感知到计数又加1了的呢?这时候很多学生都会卡住,犯了难。有的同学确实没有了解过的,就盲猜了一个,答道:用static变量存储的引用计数。
答案当然是否定的,因为如果是static变量的话,那么:
shared_ptr<A> sp1 = make_shared<A>();
shared_ptr<A> sp2 = make_shared<A>();
这两个不相干的sp1和sp2,只要模板参数T是同一个类型,就会共享同一个计数…
可以看下cppreference的描述:
https://en.cppreference.com/w/cpp/memory/shared_ptr#Implementation_notes
shared_ptr中除了有一个指针,指向所管理数据的地址。还有一个指针执行一个控制块的地址,里面存放了所管理数据的数量(常说的引用计数)、weak_ptr的数量、删除器、分配器等。
也就是说对于引用计数这一变量的存储,是在堆上的,多个shared_ptr的对象都指向同一个堆地址。在多线程环境下,管理同一个数据的shared_ptr在进行计数的增加或减少的时候是线程安全的吗?
答案是肯定的,这一操作是原子操作。
To satisfy thread safety requirements, the reference counters are typically incremented using an equivalent of std::atomic::fetch_add with std::memory_order_relaxed (decrementing requires stronger ordering to safely destroy the control block)
这个要分情况来讨论:
比如std::thread的回调函数,是一个lambda表达式,其中引用捕获了一个shared_ptr对象
std::thread td([&sp1] () {....});
又或者通过回调函数的参数传入的shared_ptr对象,参数类型是引用:
void fn(shared_ptr<A>& sp) {
...
}
...
std::thread td(fn, sp1);
这时候确实是不是线程安全的。
当你在多线程回调中修改shared_ptr指向的时候。
void fn(shared_ptr<A>& sp) {
...
if (..) {
sp = other_sp;
} else if (...) {
sp = other_sp2;
}
}
shared_ptr内数据指针要修改指向,sp原先指向的引用计数的值要减去1,other_sp指向的引用计数值要加1。然而这几步操作加起来并不是一个原子操作,如果多少线程都在修改sp的指向的时候,那么有可能会出问题。比如在导致计数在操作减一的时候,其内部的指向,已经被其他线程修改过了。引用计数的异常会导致某个管理的对象被提前析构,后续在使用到该数据的时候触发core dump。
当然如果你没有修改指向的时候,是没有问题的。
这里指的是管理的数据是同一份,而shared_ptr不是同一个对象。比如多线程回调的lambda的是按值捕获的对象。
std::thread td([sp1] () {....});
或者参数传递的shared_ptr是值传递,而非引用:
void fn(shared_ptr<A> sp) {
...
}
...
std::thread td(fn, sp1);
这时候每个线程内看到的sp,他们所管理的是同一份数据,用的是同一个引用计数。但是各自是不同的对象,当发生多线程中修改sp指向的操作的时候,是不会出现非预期的异常行为的。
也就是说,如下操作是安全的:
void fn(shared_ptr<A> sp) {
...
if (..) {
sp = other_sp;
} else if (...) {
sp = other_sp2;
}
}
尽管前面我们提到了如果是按值捕获(或传参)的shared_ptr对象,那么是该对象是线程安全的。然而话虽如此,但却可能让人误入歧途。因为我们使用shared_ptr更多的是操作其中的数据,对其管理的数据进行读写。尽管在按值捕获的时候shared_ptr是线程安全的,我们不需要对此施加额外的同步操作(比如加解锁),但是这并不意味着shared_ptr所管理的对象是线程安全的!
请注意这是两回事。
如果shared_ptr管理的数据是STL容器,那么多线程如果存在同时修改的情况,是极有可能触发core dump的。比如多个线程中对同一个vector进行push_back,或者对同一个map进行了insert。甚至是对STL容器中并发的做clear操作,都有可能出发core dump,当然这里的线程不安全性,其实是其所指向数据的类型的线程不安全导致的,并非是shared_ptr本身的线程安全性导致的。尽管如此,由于shared_ptr使用上的特殊性,所以我们有时也要将其纳入到shared_ptr相关的线程安全问题的讨论范围内。
这里简单提一下,除了STL容器的并发修改操作(这里指的是修改容器的结构,并不是修改容器中某个元素的值,后者是线程安全的,前者不是),protobuf的Message对象也是不能并发操作的,比如一个线程中修改Message对象(set、add、clear),另外一个线程也在修改,或者在将其序列化成字符串都会触发core dump。据我的工作经验,由于程序出现了非预期地并发修改容器对象或PB的Message对象的操作导致的core dump问题,在所有core dump事故原因中的占比是相当大的。
不管是STL容器或是PB的Message对象,如果无脑地加锁,当然会解决其潜在的core dump问题。但是效率并不一定高,关于STL容器在某些场景下可以规避掉该隐患,笔者曾经回答过一个相关的问题,有兴趣可以了解:
[C++ STL容器如何解决线程安全的问题?]
除上面文章中提到的一些观点之外呢,有时候调整程序的逻辑,或许能更为优雅的解决问题。
比如我曾经见过的一段代码,一次请求过程中要异步查询Redis的两个key,在异步的回调函数中对查询到的value进行处理。,有一个处理逻辑是根据查到的value值,去判断是否满足一个条件,然后清空一个unordere_map的变量(调用clear成员函数)。这两个回调函数中都有可能会触发这个clear操作。然而这个代码在测试中出现了core dump。原因就是这个clear可能同时触发,对同一个unordere_map对象进行clear,是会出现这个问题的。
修改办法就是,新增两个bool类型的flag变量,初始为false,两个异步回调函数中判断满足原先的条件后,各自修改不同的flag为true。
在后续的串行操作中(异步回调结束后)判断这两个flag,有一个为true就进行unordere_map对象的clear。
这里扯的有点远了,已经不是shared_ptr本身的讨论范围了,更多是讨论解决容器本身并发问题的办法。请注意你写的是C++代码,性能是很重要的,不要无脑加锁!
本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/8EsEVOkythIrJQzBUR6_xg
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。