Kubernetes HPA:基于 Prometheus 自定义指标的可控弹性伸缩

发表于 2年以前  | 总阅读数:406 次

在[《Kubernetes 的自动伸缩你用对了吗?》] 一文中详细说明了如何使用 Kubernetes 的自动伸缩。在 Kubernetes 中弹性伸缩主要有三种:HPA、VPA、CA。本文不再详细说明,有兴趣的可以看那篇文章。这里主要来说下 Pod 水平缩放 HPA。

随着 Kubernetes v1.23 的发布,HPA 的 API 来到了稳定版 autoscaling/v2

  • 基于自定义指标的伸缩
  • 基于多项指标的伸缩
  • 可配置的伸缩行为

从最初的 v1 版本 HPA 只支持 CPU、内存利用率的伸缩,到后来的自定义指标、聚合层 API 的支持,到了 v1.18 版本又加入了配置伸缩行为的支持,HPA 也越来越好用、可靠。

依靠 CPU 或者内存指标的扩容并非使用所有系统,看起来也没那么可靠。对大部分的 web 后端系统来说,基于 RPS(每秒请求数)的弹性伸缩来处理突发的流量则会更加靠谱。

Prometheus 也是当下流行开源监控系统,通过 Prometheus 可以获取到系统的实时流量负载指标,今天我们就来尝试下基于 Prometheus 的自定义指标进行弹性伸缩。

注:目前 HPA 的缩容到0 (scale to 0),则需要在 feature gate 打开 alpha 版本的 HPAScaleToZero 以及配置一个对象或者外部指标。即使是打开了,从 0 到 1 的扩容需要调度、IP 分配、镜像拉取等过程,存在一定的开销。如果降低这部分开销,这里先卖个关子,后续的文章进行补充。

文章中使用的所有代码都可以从这里下载。

整体架构

HPA 要获取 Prometheus 的指标数据,这里引入 Prometheus Adapter 组件。Prometheus Adapter 实现了 resource metrics、custom metrics 和 external metrics APIs API,支持 autoscaling/v2 的 HPA。

获取到指标数据后,根据预定义的规则对工作负载的示例数进行调整。

环境搭建

K3s

我们使用最新 1.23 版本的 K3s 作为 Kubernetes 环境。

export INSTALL_K3S_VERSION=v1.23.1+k3s2
curl -sfL https://get.k3s.io | sh -s - --write-kubeconfig-mode 644 --write-kubeconfig ~/.kube/config

示例应用

我们准备一个简单的 web 应用,可以记录请求次数并通过 /metrics 端点输出 Prometheus 格式的指标 http_requests_total

func main() {
 metrics := prometheus.NewCounterVec(
  prometheus.CounterOpts{
   Name:        "http_requests_total",
   Help:        "Number of total http requests",
  },
  []string{"status"},
 )
 prometheus.MustRegister(metrics)

 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
  path := r.URL.Path
  statusCode := 200
  switch path {
  case "/metrics":
   promhttp.Handler().ServeHTTP(w, r)
  default:
   w.WriteHeader(statusCode)
   w.Write([]byte("Hello World!"))
  }
  metrics.WithLabelValues(strconv.Itoa(statusCode)).Inc()
 })
 http.ListenAndServe(":3000", nil)
}

将应用部署到集群:

kubectl apply -f kubernetes/sample-httpserver-deployment.yaml

Prometheus

使用 Helm 安装 Prometheus,先添加 prometheus 的 chart 仓库:

helm repo add prometheus-community https://prometheus-community.github.io/helm-charts

这里的测试只需要用到 prometheus-server,安装时禁用其他组件。同时为了演示效果的实效性,将指标的拉取间隔设置为 10s

# install prometheus with some components disabled
# set scrape interval to 10s
helm install prometheus prometheus-community/prometheus -n default --set alertmanager.enabled=false,pushgateway.enabled=false,nodeExporter.enabled=false,kubeStateMetrics.enabled=false,server.global.scrape_interval=10s

通过端口转发,可以在浏览器中访问 web 页面。

# port forward
kubectl port-forward svc/prometheus-server 9090:80 -n prometheus

这里查询 Pod 的 RPS 使用 sum(rate(http_requests_total[30s])) by (pod) 语句查询:

Prometheus Adapter

同样使用 Helm 安装 Produmetheus Adapter,这里要进行额外的配置。

helm install prometheus-adapter prometheus-community/prometheus-adapter -n default -f kubernetes/values-adapter.yaml

除了要配置 Prometheus server 的访问方式外,还要配置自定义指标的计算规则,告诉 adapter 如何从 Prometheus 获取指标并计算出我们需要的指标:


rules:
  default: false
  custom:
   - seriesQuery: '{__name__=~"^http_requests.*_total$",container!="POD",namespace!="",pod!=""}'
     resources:
       overrides:
         namespace: { resource: "namespace" }
         pod: { resource: "pod" }
     name:
       matches: "(.*)_total"
       as: "${1}_qps"
     metricsQuery: sum(rate(<<.Series>>{<<.LabelMatchers>>}[30s])) by (<<.GroupBy>>)

可以参考详细的 Adapter 配置。

待 promethues-adapter pod 成功运行后,可以执行 custom.metrics.k8s.io 请求:

kubectl get --raw '/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/pods/*/http_requests_qps' | jq .
{
  "kind": "MetricValueList",
  "apiVersion": "custom.metrics.k8s.io/v1beta1",
  "metadata": {
    "selfLink": "/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/pods/%2A/http_requests_qps"
  },
  "items": [
    {
      "describedObject": {
        "kind": "Pod",
        "namespace": "default",
        "name": "sample-httpserver-64c495844f-b58pl",
        "apiVersion": "/v1"
      },
      "metricName": "http_requests_qps",
      "timestamp": "2022-01-18T03:32:51Z",
      "value": "100m",
      "selector": null
    }
  ]
}

注意:这里的 value: 100m,值的后缀“m” 标识 milli-requests per seconds,所以这里的 100m 的意思是 0.1/s 每秒0.1 个请求。

HPA

最后就是 HPA 的配置了:

  1. 最小最大的副本数分别设置 1、10
  2. 为了测试效果的实效性,设置扩缩容的行为 behavior
  3. 指定指标 http_requests_qps、类型 Pods 以及目标值 50000m:表示平均每个 pod 的 RPS 50 。比如以 300 的 RPS 访问,副本数就是 300/50=6 。
kind: HorizontalPodAutoscaler
apiVersion: autoscaling/v2
metadata:
  name: sample-httpserver
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: sample-httpserver
  minReplicas: 1
  maxReplicas: 10
  behavior:
    scaleDown:
      stabilizationWindowSeconds: 30
      policies:
        - type: Percent
          value: 100
          periodSeconds: 15
    scaleUp:
      stabilizationWindowSeconds: 0
      policies:
        - type: Percent
          value: 100
          periodSeconds: 15
  metrics:
    - type: Pods
      pods:
        metric:
          name: http_requests_qps
        target:
          type: AverageValue
          averageValue: 50000m

测试

测试工具选用 vegeta,因为其可以指定 RPS。

先为应用创建 NodePort service:

kubectl expose deploy sample-httpserver --name sample-httpserver-host --type NodePort --target-port 3000

kubectl get svc sample-httpserver-host
NAME                     TYPE       CLUSTER-IP     EXTERNAL-IP   PORT(S)          AGE
sample-httpserver-host   NodePort   10.43.66.206   <none>        3000:31617/TCP   12h

分别使用 24012040 的 RPS 发起请求:

# 240
echo "GET http://192.168.1.92:31617" | vegeta attack -duration 60s -connections 10 -rate 240 | vegeta report
# 120
echo "GET http://192.168.1.92:31617" | vegeta attack -duration 60s -connections 10 -rate 120 | vegeta report
# 40
echo "GET http://192.168.1.92:31617" | vegeta attack -duration 60s -connections 10 -rate 40 | vegeta report

从 Prometheus 的 web 界面上观察请求量与示例数的变化:

kubectl describe hpa sample-httpserver
Warning: autoscaling/v2beta2 HorizontalPodAutoscaler is deprecated in v1.23+, unavailable in v1.26+; use autoscaling/v2 HorizontalPodAutoscaler
Name:                           sample-httpserver
Namespace:                      default
Labels:                         <none>
Annotations:                    <none>
CreationTimestamp:              Mon, 17 Jan 2022 23:18:46 +0800
Reference:                      Deployment/sample-httpserver
Metrics:                        ( current / target )
  "http_requests_qps" on pods:  100m / 50
Min replicas:                   1
Max replicas:                   10
Behavior:
  Scale Up:
    Stabilization Window: 0 seconds
    Select Policy: Max
    Policies:
      - Type: Percent  Value: 100  Period: 15 seconds
  Scale Down:
    Stabilization Window: 30 seconds
    Select Policy: Max
    Policies:
      - Type: Percent  Value: 100  Period: 15 seconds
Deployment pods:       1 current / 1 desired
Conditions:
  Type            Status  Reason              Message
  ----            ------  ------              -------
  AbleToScale     True    ReadyForNewScale    recommended size matches current size
  ScalingActive   True    ValidMetricFound    the HPA was able to successfully calculate a replica count from pods metric http_requests_qps
  ScalingLimited  False   DesiredWithinRange  the desired count is within the acceptable range
Events:
  Type    Reason             Age                  From                       Message
  ----    ------             ----                 ----                       -------
  Normal  SuccessfulRescale  25m                  horizontal-pod-autoscaler  New size: 6; reason: pods metric http_requests_qps above target
  Normal  SuccessfulRescale  19m                  horizontal-pod-autoscaler  New size: 4; reason: All metrics below target
  Normal  SuccessfulRescale  12m (x2 over 9h)     horizontal-pod-autoscaler  New size: 4; reason: pods metric http_requests_qps above target
  Normal  SuccessfulRescale  11m                  horizontal-pod-autoscaler  New size: 5; reason: pods metric http_requests_qps above target
  Normal  SuccessfulRescale  9m40s (x2 over 12m)  horizontal-pod-autoscaler  New size: 2; reason: pods metric http_requests_qps above target
  Normal  SuccessfulRescale  9m24s (x4 over 10h)  horizontal-pod-autoscaler  New size: 3; reason: pods metric http_requests_qps above target
  Normal  SuccessfulRescale  7m54s (x3 over 9h)   horizontal-pod-autoscaler  New size: 2; reason: All metrics below target
  Normal  SuccessfulRescale  7m39s (x4 over 9h)   horizontal-pod-autoscaler  New size: 1; reason: All metrics below target

总结

基于自定义指标比如每秒请求量进行应用的水平扩容相比 CPU/内存 作为依据更加靠谱,适用于大部分的 web 系统。在突发流量时可以进行快速扩容,通过对伸缩行为的控制,可以减少副本数的抖动。Promeheus 作为流行应用的监控系统,在 Adapter 和 Aggregate API 的支持下,可以作为伸缩的指标。

目前 HPA 的 scale to 0 还在 alpha 的阶段,还需要关注副本从 0 到 N 的实效性。如果最小副本数大于0 ,对某些服务来说又会占用资源。接下来,我们会为尝试解决 0 到 N 的性能,以及资源占用的问题。

本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/LSJI9DK2Tzz8PJ1lJAI6gw

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237273次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8108次阅读
 目录