刚学 Go 的同学一定思考过 Go 程序的启动过程,关于这个问题可以看饶大的文章 [Go 程序是怎样跑起来的] 。今天我们将问题缩小,来学习 Go 程序是怎么加载启动参数,以及如何进行参数解析。
学习过 C 语言的童鞋,一定对 argc 和 argv 不会陌生。
C 程序总是从主函数 main 开始执行的,而在带参数的主函数中,依照惯例,会使用 argc 和 argv 的命名作为主函数参数。
其中,argc (argument count)代表的是命令行参数个数,argv(argument value) 是用来存放指向参数的指针数组。
#include <stdio.h>
int main(int argc, char *argv[])
{
printf("argc = %d\n",argc);
printf("argv[0] = %s, argv[1] = %s, argv[2] = %s \n", argv[0], argv[1], argv[2]);
return 0;
}
编译执行以上 C 代码,得到输出如下
$ gcc c_main.c -o main
$ ./main foo bar sss ddd
argc = 5
argv[0] = ./main, argv[1] = foo, argv[2] = bar
那在 Go 语言中,又该如何获取命令行参数呢?
同 C 一样,Go 程序也是从 main 主函数开始(用户层)执行,但主函数中并没有定义 argc 和 argv。
我们可以通过 os.Args 函数,获取命令行参数。
package main
import (
"fmt"
"os"
)
func main() {
for i, v := range os.Args {
fmt.Printf("arg[%d]: %v\n", i, v)
}
}
编译执行 Go 函数
$ go build main.go
$ ./main foo bar sss ddd
arg[0]: ./main
arg[1]: foo
arg[2]: bar
arg[3]: sss
arg[4]: ddd
同 C 一样,第一个参数也是代表可执行文件。
下文我们需要展示一些 Go 汇编代码,为了方便读者理解,先通过两图了解 Go 汇编语言对 CPU 的重新抽象。
Go汇编为了简化汇编代码的编写,引入了 PC、FP、SP、SB 四个伪寄存器。
四个伪寄存器加上其它的通用寄存器就是 Go 汇编语言对 CPU 的重新抽象。当然,该抽象的结构也适用于其它非 X86 类型的体系结构。
回到正题,命令行参数的解析过程是程序启动中的一部分内容。
以 linux amd64 系统为例,Go 程序的执行入口位于runtime/rt0_linux_amd64.s
。
TEXT _rt0_amd64_linux(SB),NOSPLIT,$-8
JMP _rt0_amd64(SB)
_rt0_amd64
函数实现于 runtime/asm_amd64.s
TEXT _rt0_amd64(SB),NOSPLIT,$-8
MOVQ 0(SP), DI // argc
LEAQ 8(SP), SI // argv
JMP runtime·rt0_go(SB)
看到 argc 和 argv 的身影了吗?在这里,它们从栈内存分别被加载到了 DI、SI 寄存器。
rt0_go
函数完成了 runtime 的所有初始化工作,但我们这里仅关注 argc 和 argv 的处理过程。
TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0
// copy arguments forward on an even stack
MOVQ DI, AX // argc
MOVQ SI, BX // argv
SUBQ $(4*8+7), SP // 2args 2auto
ANDQ $~15, SP
MOVQ AX, 16(SP)
MOVQ BX, 24(SP)
...
MOVL 16(SP), AX // copy argc
MOVL AX, 0(SP)
MOVQ 24(SP), AX // copy argv
MOVQ AX, 8(SP)
CALL runtime·args(SB)
CALL runtime·osinit(SB)
CALL runtime·schedinit(SB)
...
经过一系列操作之后,argc 和 argv 又被折腾回了栈内存 0(SP)
和 8(SP)
中。
args
函数位于runtime/runtime1.go
中
var (
argc int32
argv **byte
)
func args(c int32, v **byte) {
argc = c
argv = v
sysargs(c, v)
}
在这里,argc 和 argv 分别被保存至变量runtime.argc
和runtime.argv
。
在rt0_go
函数中调用执行完args
函数后,还会执行schedinit
。
func schedinit() {
...
goargs()
...
goargs
实现于runtime/runtime1.go
var argslice []string
func goargs() {
if GOOS == "windows" {
return
}
argslice = make([]string, argc)
for i := int32(0); i < argc; i++ {
argslice[i] = gostringnocopy(argv_index(argv, i))
}
}
该函数的目的是,将指向栈内存的命令行参数字符串指针,封装成 Go 的 string
类型,最终保存于runtime.argslice
。
这里有个知识点,Go 是如何将 C 字符串封装成 Go string 类型的呢?答案就在以下代码。
func gostringnocopy(str *byte) string {
ss := stringStruct{str: unsafe.Pointer(str), len: findnull(str)}
s := *(*string)(unsafe.Pointer(&ss))
return s
}
func argv_index(argv **byte, i int32) *byte {
return *(**byte)(add(unsafe.Pointer(argv), uintptr(i)*sys.PtrSize))
}
func add(p unsafe.Pointer, x uintptr) unsafe.Pointer {
return unsafe.Pointer(uintptr(p) + x)
}
此时,Go 已经将 argc 和 argv 的信息保存至runtime.argslice
中,那聪明的你一定能猜到os.Args方法就是读取的该slice。
在os/proc.go
中,是它的实现
var Args []string
func init() {
if runtime.GOOS == "windows" {
// Initialized in exec_windows.go.
return
}
Args = runtime_args()
}
func runtime_args() []string // in package runtime
而runtime_args
方法的实现是位于 runtime/runtime.go
中的os_runtime_args
函数
//go:linkname os_runtime_args os.runtime_args
func os_runtime_args() []string { return append([]string{}, argslice...) }
在这里实现了runtime.argslice
的拷贝。至此,os.Args
方法最终成功加载了命令行参数 argv 信息。
本文我们介绍了 Go 可以利用os.Args
解析程序启动时的命令行参数,并学习了它的实现过程。
在加载实现的源码学习中,我们发现如果从一个点出发,去追溯它的实现原理,这个过程并不复杂,希望童鞋们不要惧怕研究源码。
os.Args
方法将命令行参数存储在字符串切片中,通过遍历即可提取它们。但在实际开发中我们一般不会直接使用os.Args
方法,因为 Go 为我们提供了一个更好用的 flag 包。但鉴于篇幅原因,该部分的内容以后再写了。
go语言高级编程--------汇编语言部分学习笔记:https://blog.csdn.net/cyq6239075/article/details/106480140
Go 程序是怎样跑起来的:https://mp.weixin.qq.com/s/Rewl0DKnq6CY53m5D3G2qw
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/NYlAXYdfA0g8JpSdpksPGg
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。