优雅的代码,犹如亭亭玉立的美女,让人赏心悦目。而糟糕的代码,却犹如屎山,让人避而远之。
如何写出优雅的代码呢?那就要理解并熟悉应用这6个设计原则啦:开闭原则、单一职责原则、接口隔离原则 、迪米特法则、里氏替换原则、依赖倒置原则。本文呢,将通过代码demo,让大家轻松理解这6个代码设计原则,加油~
开闭原则,即对扩展开放,对修改关闭。
对于扩展和修改,我们怎么去理解它呢?扩展开放表示,未来业务需求是变化万千,代码应该保持灵活的应变能力。修改关闭表示不允许在原来类修改,保持稳定性。
因为日常需求是不断迭代更新的,所以我们经常需要在原来的代码中修改。如果代码设计得不好,扩展性不强,每次需求迭代,都要在原来代码中修改,很可能会引入bug
。因此,我们的代码应该遵循开闭原则,也就是对扩展开放,对修改关闭。
为了方便大家理解开闭原则,我们来看个例子:假设有这样的业务场景,大数据系统把文件推送过来,根据不同类型采取不同的解析方式。多数的小伙伴就会写出以下的代码:
if(type=="A"){
//按照A格式解析
}else if(type=="B"){
//按B格式解析
}else{
//按照默认格式解析
}
这段代码有什么问题呢?
显然,增加、删除某个逻辑,都需要修改到原来类的代码,这就违反了开闭原则了。为了解决这个问题,我们可以使用策略模式去优化它。
你可以先声明一个文件解析的接口,如下:
public interface IFileStrategy {
//属于哪种文件解析类型,A或者B
FileTypeResolveEnum gainFileType();
//封装的公用算法(具体的解析方法)
void resolve(Object param);
}
然后实现不同策略的解析文件,如类型A解析:
@Component
public class AFileResolve implements IFileStrategy {
@Override
public FileTypeResolveEnum gainFileType() {
return FileTypeResolveEnum.File_A_RESOLVE;
}
@Override
public void resolve(Object objectparam) {
logger.info("A 类型解析文件,参数:{}",objectparam);
//A类型解析具体逻辑
}
}
如果未来需求变更的话,比如增加、删除某个逻辑,不会再修改到原来的类啦,只需要修改对应的文件解析类型的类即可。
对于如何使用设计模式,大家有兴趣的话,可以看我以前的这篇文章哈:[实战!工作中常用到哪些设计模式]
单一职责原则:一个类或者一个接口,最好只负责一项职责。比如一个类C
违反了单一原则,它负责两个职责P1
和P2
。当职责P1
需要修改时,就会改动到类C
,这就可能导致原本正常的P2
也受影响。
如何更好理解呢?比如你实现一个图书管理系统,一个类既有图书的增删改查,又有读者的增删改查,你就可以认为这个类违反了单一原则。因为这个类涉及了不同的功能职责点,你可以把这个拆分。
以上图书管理系统这个例子,违反单一原则,按业务拆分。这比较好理解,但是有时候,一个类并不是那么好区分。这时候大家可以看这个标准,来判断功能职责是否单一:
比如,你写了一个方法,这个方法包括了日期处理和借还书的业务操作,你就可以把日期处理抽到私有方法。再然后,如果你发现,很多私有方法,都是类似的日期处理,你就可以把这个日期处理方法抽成一个工具类。
日常开发中,单一原则的思想都有体现的。比如微服务拆分。
接口隔离原则:接口的调用者或者使用者,不应该强迫依赖它不需要的接口。它要求建立单一的接口,不要建立庞大臃肿的接口,尽量细化接口,接口中的方法尽量少,让接口中只包含客户(调用者)感兴趣的方法。即一个类对另一个类的依赖应该建立在最小的接口上。
比如类A
通过接口I
依赖类B
,类C
通过接口I
依赖类D
,如果接口I
对于类A
和类B
来说,都不是最小接口,则类B
和类D
必须去实现他们不需要的方法。如下图:
这个图表达的意思是:类A
依赖接口I
中的method1
、method2
,类B是对类A依赖的实现。类C依赖接口I
中的method1
、method3
,类D是对类C依赖的实现。对于实现类B和D,它们都存在用不到的方法,但是因为实现了接口I,所以必须要实现这些用不到的方法。
可以看下以下代码:
public interface I {
void method1();
void method2();
void method3();
}
@Service
public class A {
@Resource(name="B")
private I i;
public void depend1() {
i.method1();
}
public void depend2(){
i.method2();
}
}
@Service("B")
public class B implements I {
@Override
public void method1() {
System.out.println("类B实现接口I的方法1");
}
@Override
public void method2() {
System.out.println("类B实现接口I的方法2");
}
//没用到这个方法,但是也要默认实现,因为I有这个接口方法
@Override
public void method3() {
}
}
@Service
public class C {
@Resource(name="D")
private I i;
public void depend1(I i){
i.method1();
}
public void depend3(I i){
i.method3();
}
}
@Service("D")
public class D implements I {
@Override
public void method1() {
System.out.println("类D实现接口I的方法1");
}
//没用到这个方法,但是也要默认实现,因为I有这个接口方法
@Override
public void method2() {
}
@Override
public void method3() {
System.out.println("类D实现接口I的方法3");
}
}
大家可以发现,如果接口过于臃肿,只要接口中出现的方法,不管对依赖于它的类有没有用到,实现类都必须去实现这些方法。实现类B
没用到method3
,它也要有个默认实现。实现类D
没用到method2
,它也要有个默认实现。
显然,这不是一个好的设计,违反了接口隔离原则。我们可以对接口I
进行拆分。拆分后的设计如图2所示:
接口是不是分得越细越好呢?并不是。日常开发中,采用接口隔离原则对接口进行约束时,要注意以下几点:
定义:又叫最少知道原则。一个类对于其他类知道的越少越好,就是说一个对象应当对其他对象有尽可能少的了解,只和朋友谈心,不和陌生人说话。它的核心思想就是,尽量降低类与类之间的耦合,尽最大能力减小代码修改带来的对原有的系统的影响。
比如一个生活例子:你对你的对象肯定了解的很多,但是如果你对别人的对象也了解很多,你的对象要是知道,那就要出大事了。
我们来看下一个违反迪米特法则的例子,业务场景是这样的:一个学校,要求打印出所有师生的ID。
//学生
class Student{
private String id;
public void setId(String id){
this.id = id;
}
public String getId(){
return id;
}
}
//老师
class Teacher{
private String id;
public void setId(String id){
this.id = id;
}
public String getId(){
return id;
}
}
//管理者(班长)
public class Monitor {
//所有学生
public List<Student> getAllStudent(){
List<Student> list = new ArrayList<Student>();
for(int i=0; i<100; i++){
Student student = new Student();
//为每个学生分配个ID
student.setId("学生Id:"+i);
list.add(student);
}
return list;
}
}
//校长
public class Principal {
//所有教师
public List<Teacher> getAllTeacher(){
List<Teacher> list = new ArrayList<Teacher>();
for(int i=0; i<20; i++){
Teacher emp = new Teacher();
//为全校老师按顺序分配一个ID
emp.setId("老师编号"+i);
list.add(emp);
}
return list;
}
//所有师生
public void printAllTeacherAndStudent(ClassMonitor classMonitor) {
List<Student> list1 = classMonitor.getAllStudent();
for (Student s : list1) {
System.out.println(s.getId());
}
List<Teacher> list2 = this.getAllTeacher();
for (Teacher teacher : list2) {
System.out.println(teacher.getId());
}
}
}
这块代码。问题出在类Principal
中,根据迪米特法则,只能与直接的朋友发生通信,而Student
类并不是Principal
类的直接朋友(以局部变量出现的耦合不属于直接朋友),从逻辑上讲校长Principal
只与管理者Monitor
耦合就行了,可以让Principal
继承类Monitor
,重写一个printMember
的方法。优化后的代码如下:
public class Monitor {
public List<Student> getAllStudent(){
List<Student> list = new ArrayList<Student>();
for(int i=0; i<100; i++){
Student student = new Student();
//为每个学生分配个ID
student.setId("学生Id:"+i);
list.add(student);
}
return list;
}
public void printMember() {
List<Student> list = this.getAllStudent();
for (Student student : list) {
System.out.println(student.getId());
}
}
}
public class Principal extends Monitor {
public List<Teacher> getAllTeacher(){
List<Teacher> list = new ArrayList<Teacher>();
for(int i=0; i<30; i++){
Teacher emp = new Teacher();
//为全校老师按顺序分配一个ID
emp.setId("老师编号"+i);
list.add(emp);
}
return list;
}
public void printMember() {
super.printMember();
for (Teacher teacher : this.getAllTeacher()) {
System.out.println(teacher.getId());
}
}
}
里氏替换原则:
如果对每一个类型为
S
的对象o1
,都有类型为T
的对象o2
,使得以T
定义的所有程序P
在所有的对象o1
都代换成o2
时,程序P
的行为没有发生变化,那么类型S
是类型T
的子类型。
一句话来描述就是:只要有父类出现的地方,都可以用子类来替代,而且不会出现任何错误和异常。 更通俗点讲,就是子类可以扩展父类的功能,但是不能改变父类原有的功能。
其实,对里氏替换原则的定义可以总结如下:
我们来看个例子:
public class Cache {
public void set(String key, String value) {
}
}
public class RedisCache extends Cache {
public void set(String key, String value) {
}
}
这里例子是没有违反里氏替换原则的,任何父类、父接口出现的地方子类都可以出现。如果给RedisCache
加上参数校验,如下:
public class Cache {
public void set(String key, String value) {
}
}
public class RedisCache extends Cache {
public void set(String key, String value) {
if (key == null || key.length() < 10 || key.length() > 100) {
System.out.println("key的长度不符合要求");
throw new IllegalArgumentException();
}
}
}
这就违反了里氏替换原则了,因为子类方法增加了加了参数校验,抛出了异常,虽然子类仍然可以来替换父类。
依赖倒置原则定义:
高层模块不应该依赖低层模块,两者都应该依赖其抽象;抽象不应该依赖细节,细节应该依赖抽象。它的核心思想是:要面向接口编程,而不要面向实现编程。
依赖倒置原则可以降低类间的耦合性、提高系统的稳定性、减少并行开发引起的风险、提高代码的可读性和可维护性。要满足依赖倒置原则,我们需要在项目中满足这个规则:
我们来看一段违反依赖倒置原则的代码,业务需求是:顾客从淘宝购物。代码如下:
class Customer{
public void shopping(TaoBaoShop shop){
//购物
System.out.println(shop.buy());
}
}
以上代码是存在问题的,如果未来产品变更需求,改为顾客从京东上购物,就需要把代码修改为:
class Customer{
public void shopping(JingDongShop shop){
//购物
System.out.println(shop.buy());
}
}
如果产品又变更为从天猫购物呢?那有得修改代码了,显然这违反了开闭原则
。顾客类设计时,同具体的购物平台类绑定了,这违背了依赖倒置原则。可以设计一个shop
接口,不同购物平台(如淘宝、京东)实现于这个接口,即修改顾客类面向该接口编程,就可以解决这个问题了。代码如下:
class Customer{
public void shopping(Shop shop){
//购物
System.out.println(shop.buy());
}
}
interface Shop{
String buy();
}
Class TaoBaoShop implements Shop{
public String buy(){
return "从淘宝购物";
}
}
Class JingDongShop implements Shop{
public String buy(){
return "从京东购物";
}
}
本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/vF8c59A3dX5IeCl8q8tS8A
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。