​Spark Standalone和yarn区别

发表于 2年以前  | 总阅读数:460 次

Spark Standalone模式提交任务

Cluster模式:


./spark-submit  \
--master spark://node01:7077  \
--deploy-mode cluster 
--class org.apache.spark.examples.SparkPi \
--driver-memory 1g \ 
--executor-memory 1g \ 
--executor-cores 2 \ 
../lib/spark-examples-1.6.0-hadoop2.6.0.jar  100

  • 执行流程

1、cluster模式提交应用程序后,会向Master请求启动Driver.(而不是启动application)

2、Master接受请求,随机在集群一台节点启动Driver进程。

3、Driver启动后为当前的应用程序申请资源。Master返回资源,并在对应的worker节点上发送消息启动Worker中的executor进程。

4、Driver端发送task到worker节点上执行。

5、worker将执行情况和执行结果返回给Driver端。Driver监控task任务,并回收结果。

  • 总结

1、当在客户端提交多个application时,Driver会在Woker节点上随机启动,这种模式会将单节点的网卡流量激增问题分散到集群中在客户端看不到task执行情况和结果。要去webui中看。cluster模式适用于生产环境

2、 Master模式先启动Driver,再启动Application。

Client模式:


./spark-submit \
--master  spark://node01:7077 \
--class org.apache.spark.examples.SparkPi  \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 2 \
../lib/spark-examples-1.6.0-hadoop2.6.0.jar 100

---------------------------------------------------------------------

 ./spark-submit \
--master  spark://node01:7077 \
--deploy-mode client \
--class org.apache.spark.examples.SparkPi \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 2 \
../lib/spark-examples-1.6.0-hadoop2.6.0.jar 100

  • 执行流程

1、client模式提交任务后,会在客户端启动Driver进程。

2、Driver会向Master申请启动Application启动的资源。

3、资源申请成功,Driver端将task发送到worker端执行

4、worker将task执行结果返回到Driver端。

  • 总结

    1、client模式适用于测试调试程序。Driver进程是在客户端启动的,这里的客户端就是指提交应用程序的当前节点。在Driver端可以看到task执行的情况。生产环境下不能使用client模式,是因为:假设要提交100个application到集群运行,Driver每次都会在client端启动,那么就会导致客户端100次网卡流量暴增的问题。(因为要监控task的运行情况,会占用很多端口,如上图的结果图)客户端网卡通信,都被task监控信息占用。

    2、Client端作用

1 . Driver负责应用程序资源的申请

2 . 任务的分发。

3 . 结果的回收。

4 . 监控task执行情况。

Spark on yarn模式提交任务

官方文档:http://spark.apache.org/docs/latest/running-on-yarn.html

Spark-Yarn Cluster模式:

./bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 2 \
--queue default \
lib/spark-examples*.jar \
10

---------------------------------------------------------------------------------------------------------------------------------
./bin/spark-submit --class cn.edu360.spark.day1.WordCount \
--master yarn \
--deploy-mode cluster \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 2 \
--queue default \
/home/bigdata/hello-spark-1.0.jar \
hdfs://node-1.edu360.cn:9000/wc hdfs://node-1.edu360.cn:9000/out-yarn-1

Spark-yarn Cluster集群模式原理

Spark Driver首先作为一个ApplicationMaster在YARN集群中启动,客户端提交给ResourceManager的每一个job都会在集群的NodeManager节点上分配一个唯一的ApplicationMaster,由该ApplicationMaster管理全生命周期的应用。具体过程:


1. 由client向ResourceManager提交请求,并上传jar到HDFS上
  这期间包括四个步骤:
    a).连接到RM
    b).从RM的ASM(ApplicationsManager )中获得metric、queue和resource等信息。
    c). upload app jar and spark-assembly jar
    d).设置运行环境和container上下文(launch-container.sh等脚本)
2. ResouceManager向NodeManager申请资源,创建Spark ApplicationMaster(每个SparkContext都有一个ApplicationMaster)
3. NodeManager启动ApplicationMaster,并向ResourceManager AsM注册
4. ApplicationMaster从HDFS中找到jar文件,启动SparkContext、DAGscheduler和YARN Cluster Scheduler
5. ResourceManager向ResourceManager AsM注册申请container资源
6. ResourceManager通知NodeManager分配Container,这时可以收到来自ASM关于container的报告。(每个container对应一个executor)
7. Spark ApplicationMaster直接和container(executor)进行交互,完成这个分布式任务。

Spark-Yarn Client模式:

./bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 2 \
--queue default \
lib/spark-examples*.jar \
10

spark-shell必须使用client模式
./bin/spark-shell --master yarn --deploy-mode client

实际案例:在YARN模式,executor-cores和executor-memory的设置对调度计算机的性能作用很重要

$ ./bin/spark-submit \
  --class cn.cstor.face.BatchCompare \
  --master yarn \
  --deploy-mode client \
  --executor-memory 30G \
  --executor-cores 20 \
  --properties-file $BIN_DIR/conf/cstor-spark.properties \
  cstor-deep-1.0-SNAPSHOT.jar

在client模式下,Driver运行在Client上,通过ApplicationMaster向RM获取资源。本地Driver负责与所有的executor container进行交互,并将最后的结果汇总。结束掉终端,相当于kill掉这个spark应用。一般来说,如果运行的结果仅仅返回到terminal上时需要配置这个。

客户端的Driver将应用提交给Yarn后,Yarn会先后启动ApplicationMaster和executor,另外ApplicationMaster和executor都 是装载在container里运行,container默认的内存是1G,ApplicationMaster分配的内存是driver- memory,executor分配的内存是executor-memory。同时,因为Driver在客户端,所以程序的运行结果可以在客户端显 示,Driver以进程名为SparkSubmit的形式存在。

如果使用spark on yarn 提交任务,一般情况,都使用cluster模式,该模式,Driver运行在集群中,其实就是运行在ApplicattionMaster这个进程成,如果该进程出现问题,yarn会重启ApplicattionMaster(Driver),SparkSubmit的功能就是为了提交任务。

如果使用交换式的命令行,必须用Client模式,该模式,Driver是运行在SparkSubmit进程中,因为收集的结果,必须返回到命令行(即启动命令的那台机器上),该模式,一般测试,或者运行spark-shell、spark-sql这个交互式命令行是使用

注意:如果你配置spark-on-yarn的client模式,其实会报错。 修改所有yarn节点的yarn-site.xml,在该文件中添加如下配置

<property>
    <name>yarn.nodemanager.pmem-check-enabled</name>
    <value>false</value>
</property>

<property>
    <name>yarn.nodemanager.vmem-check-enabled</name>
    <value>false</value>
</property>

两种模式的区别(yarn):

cluster模式:Driver程序在Yarn中运行,应用的运行结果不能在客户端显示,所以最好运行那些将结果最终保存在外部存储介质(如HDFS,Redis,MySQL)而非stdout输出的应用程序,客户端的终端显示的仅是作为Yarn的job的简单运行状况.

client模式:Driver运行在Client上,应用程序运行结果会在客户端显示,所有适合运行结果又输出的应用程序(Spark-shell)

Spark-Submit 参数详解:



  --master MASTER_URL         spark://host:port, mesos://host:port, yarn, or local.
  --deploy-mode DEPLOY_MODE   Whether to launch the driver program locally ("client") or
                              on one of the worker machines inside the cluster ("cluster")
                              (Default: client).
  --class CLASS_NAME          Your application's main class (for Java / Scala apps).
  --name NAME                 A name of your application.
  --jars JARS                 Comma-separated list of local jars to include on the driver
                              and executor classpaths.
  --packages                  Comma-separated list of maven coordinates of jars to include
                              on the driver and executor classpaths. Will search the local
                              maven repo, then maven central and any additional remote
                              repositories given by --repositories. The format for the
                              coordinates should be groupId:artifactId:version.
  --exclude-packages          Comma-separated list of groupId:artifactId, to exclude while
                              resolving the dependencies provided in --packages to avoid
                              dependency conflicts.
  --repositories              Comma-separated list of additional remote repositories to
                              search for the maven coordinates given with --packages.
  --py-files PY_FILES         Comma-separated list of .zip, .egg, or .py files to place
                              on the PYTHONPATH for Python apps.
  --files FILES               Comma-separated list of files to be placed in the working
                              directory of each executor.

  --conf PROP=VALUE 

  --properties-file FILE      从文件中载入额外的配置,如果不指定则载入conf/spark-defaults.conf。

  --driver-memory MEM         Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
  --driver-java-options       Extra Java options to pass to the driver.
  --driver-library-path       Extra library path entries to pass to the driver.
  --driver-class-path         Extra class path entries to pass to the driver. Note that
                              jars added with --jars are automatically included in the
                              classpath.

  --executor-memory MEM       Memory per executor (e.g. 1000M, 2G) (Default: 1G).

  --proxy-user NAME           User to impersonate when submitting the application.

  --help, -h                  Show this help message and exit
  --verbose, -v               Print additional debug output
  --version,                  Print the version of current Spark

YARN-only:

Options:
  --driver-cores NUM          driver使用的核心数,只在cluster模式使用,默认值为1。
  --queue QUEUE_NAME          提交到指定的YARN队列,默认队列为"default"。
  --num-executors NUM         启动的executor的数量,默认值为2.
  --archives ARCHIVES         Comma separated list of archives to be extracted into the
                              working directory of each executor.
  --principal PRINCIPAL       Principal to be used to login to KDC, while running on
                              secure HDFS.
  --keytab KEYTAB             The full path to the file that contains the keytab for the
                              principal specified above. This keytab will be copied to
                              the node running the Application Master via the Secure
                              Distributed Cache, for renewing the login tickets and the
                              delegation tokens periodically.

注意:如果部署模式是cluster,但是代码中有标准输出的话将看不到,需要把结果写到HDFS中,如果是client模式则可以看到输出。

本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/t1A3UP6LESTB_foIABbvLA

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237271次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8108次阅读
 目录