面试中,99%的人都很害怕:教你如何设计一个XXX,你该怎么设计?
之前,我也在我的知识星球中分享给下面12个相关问题:
[] 那秒杀系统到底要如何设计呢?
话不多说,我们进入主题。
本文主要有三个议题:高性能、一致性、高可用。
[秒杀大家都不陌生。自2011年首次出现以来,无论是双十一购物还是 12306 抢票,秒杀场景已随处可见。简单来说,秒杀就是在同一时刻大量请求争抢购买同一商品并完成交易的过程。从架构视角来看,秒杀系统本质是一个高性能、高一致、高可用的三高系统。而打造并维护一个超大流量的秒杀系统需要进行哪些关注,就是本文讨论的话题。]
对于一个日常平稳的业务系统,如果直接开通秒杀功能的话,往往会出现很多问题——
干系人 | 问题分类 | 业务出现的问题 | 设计要求 |
---|---|---|---|
用户 | 体验较差 | 秒杀开始,系统瞬间承受平时数十倍甚至上百倍的流量,直接宕掉 | 高性能 |
用户下单后却付不了款,显示商品已经被其他人买走了 | 一致性 | ||
商家 | 商品超卖 | 100 件商品,却出现 200 人下单成功,成功下单买到商品的人数远远超过活动商品数量的上限 | 一致性 |
资金受损 | 竞争对手通过恶意下单的方式将活动商品全部下单,导致库存清零,商家无法正常售卖 | 高可用 | |
秒杀器猖獗,黄牛通过秒杀器扫货,商家无法达到营销目的 | 高可用 | ||
平台 | 风险不可控 | 系统的其它与秒杀活动不相关的模块变得异常缓慢,业务影响面扩散 | 高可用 |
拖垮网站 | 在线人数创新高,核心链路涉及的上下游服务从前到后都在告警 | 高性能 | |
库存只有一份,所有请求集中读写同一个数据,DB 出现单点 | 高性能 |
秒杀本质是要求一个瞬时高发下的承压系统,这也是其区别于其他业务的核心场景。对日常系统秒杀产生的问题逐一进行拆解分类,秒杀对应到架构设计,其实就是高可用、一致性和高性能的要求。关于秒杀系统的设计思考,本文即基于此 3 层依次推进,简述如下——
大家可能会注意到,秒杀过程中你是不需要刷新整个页面的,只有时间在不停跳动。这是因为一般都会对大流量的秒杀系统做系统的静态化改造,即数据意义上的动静分离。动静分离三步走:1、数据拆分;2、静态缓存;3、数据整合。
动静分离的首要目的是将动态页面改造成适合缓存的静态页面。因此第一步就是分离出动态数据,主要从以下 2 个方面进行:
这里你可以打开电商平台的一个秒杀页面,看看这个页面里都有哪些动静数据。
分离出动静态数据之后,第二步就是将静态数据进行合理的缓存,由此衍生出两个问题:1、怎么缓存;2、哪里缓存
1.2.1 怎么缓存
静态化改造的一个特点是直接缓存整个 HTTP 连接而不是仅仅缓存静态数据,如此一来,Web 代理服务器根据请求 URL,可以直接取出对应的响应体然后直接返回,响应过程无需重组 HTTP 协议,也无需解析 HTTP 请求头。而作为缓存键,URL唯一化是必不可少的,只是对于商品系统,URL 天然是可以基于商品 ID 来进行唯一标识的,比如淘宝的 https://item.taobao.com/item....
1.2.2 哪里缓存
静态数据缓存到哪里呢?可以有三种方式:1、浏览器;2、CDN ;3、服务端。
浏览器当然是第一选择,但用户的浏览器是不可控的,主要体现在如果用户不主动刷新,系统很难主动地把消息推送给用户(注意,当讨论静态数据时,潜台词是 “相对不变”,言外之意是 “可能会变”),如此可能会导致用户端在很长一段时间内看到的信息都是错误的。对于秒杀系统,保证缓存可以在秒级时间内失效是不可或缺的。
服务端主要进行动态逻辑计算及加载,本身并不擅长处理大量连接,每个连接消耗内存较多,同时 Servlet 容器解析 HTTP 较慢,容易侵占逻辑计算资源;另外,静态数据下沉至此也会拉长请求路径。
因此通常将静态数据缓存在 CDN,其本身更擅长处理大并发的静态文件请求,既可以做到主动失效,又离用户尽可能近,同时规避 Java 语言层面的弱点。需要注意的是,上 CDN 有以下几个问题需要解决:
因此,将数据放到全国所有的 CDN 节点是不太现实的,失效问题、命中率问题都会面临比较大的挑战。更为可行的做法是选择若干 CDN 节点进行静态化改造,节点的选取通常需要满足以下几个条件:
基于以上因素,选择 CDN 的二级缓存比较合适,因为二级缓存数量偏少,容量也更大,访问量相对集中,这样就可以较好解决缓存的失效问题以及命中率问题,是当前比较理想的一种 CDN 化方案。部署方式如下图所示:[]
分离出动静态数据之后,前端如何组织数据页就是一个新的问题,主要在于动态数据的加载处理,通常有两种方案:ESI(Edge Side Includes)方案和 CSI(Client Side Include)方案。
动静分离对于性能的提升,抽象起来只有两点,一是数据要尽量少,以便减少没必要的请求,二是路径要尽量短,以便提高单次请求的效率。具体方法其实就是基于这个大方向进行的。
热点分为热点操作和热点数据,以下分开进行讨论。
零点刷新、零点下单、零点添加购物车等都属于热点操作。热点操作是用户的行为,不好改变,但可以做一些限制保护,比如用户频繁刷新页面时进行提示阻断。
热点数据的处理三步走,一是热点识别,二是热点隔离,三是热点优化。
热点数据分为静态热点和动态热点,具体如下:
因此秒杀系统需要实现热点数据的动态发现能力,一个常见的实现思路是:
需要注意的是:
热点数据识别出来之后,第一原则就是将热点数据隔离出来,不要让 1% 影响到另外的 99%,可以基于以下几个层次实现热点隔离:
当然,实现隔离还有很多种办法。比如,可以按照用户来区分,为不同的用户分配不同的 Cookie,入口层路由到不同的服务接口中;再比如,域名保持一致,但后端调用不同的服务接口;又或者在数据层给数据打标进行区分等等,这些措施的目的都是把已经识别的热点请求和普通请求区分开来。
热点数据隔离之后,也就方便对这 1% 的请求做针对性的优化,方式无外乎两种:
数据的热点优化与动静分离是不一样的,热点优化是基于二八原则对数据进行了纵向拆分,以便进行针对性地处理。热点识别和隔离不仅对“秒杀”这个场景有意义,对其他的高性能分布式系统也非常有参考价值。
对于一个软件系统,提高性能可以有很多种手段,如提升硬件水平、调优JVM 性能,这里主要关注代码层面的性能优化——
性能优化需要一个基准值,所以系统还需要做好应用基线,比如性能基线(何时性能突然下降)、成本基线(去年大促用了多少机器)、链路基线(核心流程发生了哪些变化),通过基线持续关注系统性能,促使系统在代码层面持续提升编码质量、业务层面及时下掉不合理调用、架构层面不断优化改进。
秒杀系统中,库存是个关键数据,卖不出去是个问题,超卖更是个问题。秒杀场景下的一致性问题,主要就是库存扣减的准确性问题。
电商场景下的购买过程一般分为两步:下单和付款。“提交订单”即为下单,“支付订单”即为付款。基于此设定,减库存一般有以下几个方式:
能够看到,减库存方式是基于购物过程的多阶段进行划分的,但无论是在下单阶段还是付款阶段,都会存在一些问题,下面进行具体分析。
优势:用户体验最好。下单减库存是最简单的减库存方式,也是控制最精确的一种。下单时可以直接通过数据库事务机制控制商品库存,所以一定不会出现已下单却付不了款的情况。
劣势:可能卖不出去。正常情况下,买家下单后付款概率很高,所以不会有太大问题。但有一种场景例外,就是当卖家参加某个促销活动时,竞争对手通过恶意下单的方式将该商品全部下单,导致库存清零,那么这就不能正常售卖了——要知道,恶意下单的人是不会真正付款的,这正是 “下单减库存” 的不足之处。
优势:一定实际售卖。“下单减库存” 可能导致恶意下单,从而影响卖家的商品销售, “付款减库存” 由于需要付出真金白银,可以有效避免。
劣势:用户体验较差。用户下单后,不一定会实际付款,假设有 100 件商品,就可能出现 200 人下单成功的情况,因为下单时不会减库存,所以也就可能出现下单成功数远远超过真正库存数的情况,这尤其会发生在大促的热门商品上。如此一来就会导致很多买家下单成功后却付不了款,购物体验自然是比较差的。
优势:缓解了以上两种方式的问题。预扣库存实际就是“下单减库存”和 “付款减库存”两种方式的结合,将两次操作进行了前后关联,下单时预扣库存,付款时释放库存。
劣势:并没有彻底解决以上问题。比如针对恶意下单的场景,虽然可以把有效付款时间设置为 10 分钟,但恶意买家完全可以在 10 分钟之后再次下单。
减库存的问题主要体现在用户体验和商业诉求两方面,其本质原因在于购物过程存在两步甚至多步操作,在不同阶段减库存,容易存在被恶意利用的漏洞。
业界最为常见的是预扣库存。无论是外卖点餐还是电商购物,下单后一般都有个 “有效付款时间”,超过该时间订单自动释放,这就是典型的预扣库存方案。但如上所述,预扣库存还需要解决恶意下单的问题,保证商品卖的出去;另一方面,如何避免超卖,也是一个痛点。
UPDATE item SET inventory = CASE WHEN inventory >= xxx THEN inventory-xxx ELSE inventory END
业务手段保证商品卖的出去,技术手段保证商品不会超卖,库存问题从来就不是简单的技术难题,解决问题的视角是多种多样的。
库存是个关键数据,更是个热点数据。对系统来说,热点的实际影响就是 “高读” 和 “高写”,也是秒杀场景下最为核心的一个技术难题。
秒杀场景解决高并发读问题,关键词是“分层校验”。即在读链路时,只进行不影响性能的检查操作,如用户是否具有秒杀资格、商品状态是否正常、用户答题是否正确、秒杀是否已经结束、是否非法请求等,而不做一致性校验等容易引发瓶颈的检查操作;直到写链路时,才对库存做一致性检查,在数据层保证最终准确性。
因此,在分层校验设定下,系统可以采用分布式缓存甚至LocalCache来抵抗高并发读。即允许读场景下一定的脏数据,这样只会导致少量原本无库存的下单请求被误认为是有库存的,等到真正写数据时再保证最终一致性,由此做到高可用和一致性之间的平衡。
实际上,分层校验的核心思想是:不同层次尽可能过滤掉无效请求,只在“漏斗” 最末端进行有效处理,从而缩短系统瓶颈的影响路径。
高并发写的优化方式,一种是更换DB选型,一种是优化DB性能,以下分别进行讨论。
4.2.1 更换DB选型
秒杀商品和普通商品的减库存是有差异的,核心区别在数据量级小、交易时间短,因此能否把秒杀减库存直接放到缓存系统中实现呢,也就是直接在一个带有持久化功能的缓存中进行减库存操作,比如 Redis?
如果减库存逻辑非常单一的话,比如没有复杂的 SKU 库存和总库存这种联动关系的话,个人认为是完全可以的。但如果有比较复杂的减库存逻辑,或者需要使用到事务,那就必须在数据库中完成减库存操作。
4.2.2 优化DB性能
库存数据落地到数据库实现其实是一行存储(MySQL),因此会有大量线程来竞争 InnoDB 行锁。但并发越高,等待线程就会越多,TPS 下降,RT 上升,吞吐量会受到严重影响——注意,这里假设数据库已基于上文【性能优化】完成数据隔离,以便于讨论聚焦 。
解决并发锁的问题,有两种办法:
高读和高写的两种处理方式大相径庭。读请求的优化空间要大一些,而写请求的瓶颈一般都在存储层,优化思路的本质还是基于 CAP 理论做平衡。
当然,减库存还有很多细节问题,例如预扣的库存超时后如何进行回补,再比如第三方支付如何保证减库存和付款时的状态一致性,这些也是很大的挑战。
盯过秒杀流量监控的话,会发现它不是一条蜿蜒而起的曲线,而是一条挺拔的直线,这是因为秒杀请求高度集中于某一特定的时间点。这样一来就会造成一个特别高的零点峰值,而对资源的消耗也几乎是瞬时的。所以秒杀系统的可用性保护是不可或缺的。
对于秒杀的目标场景,最终能够抢到商品的人数是固定的,无论 100 人和 10000 人参加结果都是一样的,即有效请求额度是有限的。并发度越高,无效请求也就越多。但秒杀作为一种商业营销手段,活动开始之前是希望有更多的人来刷页面,只是真正开始后,秒杀请求不是越多越好。因此系统可以设计一些规则,人为的延缓秒杀请求,甚至可以过滤掉一些无效请求。
早期秒杀只是简单的点击秒杀按钮,后来才增加了答题。为什么要增加答题呢?主要是通过提升购买的复杂度,达到两个目的:
需要注意的是,答题除了做正确性验证,还需要对提交时间做验证,比如<1s 人为操作的可能性就很小,可以进一步防止机器答题的情况。
答题目前已经使用的非常普遍了,本质是通过在入口层削减流量,从而让系统更好地支撑瞬时峰值。
最为常见的削峰方案是使用消息队列,通过把同步的直接调用转换成异步的间接推送缓冲瞬时流量。除了消息队列,类似的排队方案还有很多,例如:
排队方式的弊端也是显而易见的,主要有两点:
排队本质是在业务层将一步操作转变成两步操作,从而起到缓冲的作用,但鉴于此种方式的弊端,最终还是要基于业务量级和秒杀场景做出妥协和平衡。
过滤的核心结构在于分层,通过在不同层次过滤掉无效请求,达到数据读写的精准触发。常见的过滤主要有以下几层:
1、读限流:对读请求做限流保护,将超出系统承载能力的请求过滤掉 2、读缓存:对读请求做数据缓存,将重复的请求过滤掉 3、写限流:对写请求做限流保护,将超出系统承载能力的请求过滤掉 4、写校验:对写请求做一致性校验,只保留最终的有效数据
过滤的核心目的是通过减少无效请求的数据IO保障有效请求的IO性能。
系统可以通过入口层的答题、业务层的排队、数据层的过滤达到流量削峰的目的,本质是在寻求商业诉求与架构性能之间的平衡。另外,新的削峰手段也层出不穷,以业务切入居多,比如零点大促时同步发放优惠券或发起抽奖活动,将一部分流量分散到其他系统,这样也能起到削峰的作用。
当一个系统面临持续的高峰流量时,其实是很难单靠自身调整来恢复状态的,日常运维没有人能够预估所有情况,意外总是无法避免。尤其在秒杀这一场景下,为了保证系统的高可用,必须设计一个 Plan B 方案来进行兜底。
高可用建设,其实是一个系统工程,贯穿在系统建设的整个生命周期。
具体来说,系统的高可用建设涉及架构阶段、编码阶段、测试阶段、发布阶段、运行阶段,以及故障发生时,逐一进行分析:
对于日常运维而言,高可用更多是针对运行阶段而言的,此阶段需要额外进行加强建设,主要有以下几种手段:
在系统建设的整个生命周期中,每个环节中都可能犯错,甚至有些环节犯的错,后面是无法弥补的或者成本极高的。所以高可用是一个系统工程,必须放到整个生命周期中进行全面考虑。同时,考虑到服务的增长性,高可用更需要长期规划并进行体系化建设。
高可用其实是在说 “稳定性”,稳定性是一个平时不重要,但出了问题就要命的事情,然而它的落地又是一个问题——平时业务发展良好,稳定性建设就会降级给业务让路。解决这个问题必须在组织上有所保障,比如让业务负责人背上稳定性绩效指标,同时在部门中建立稳定性建设小组,小组成员由每条线的核心力量兼任,绩效由稳定性负责人来打分,这样就可以把体系化的建设任务落实到具体的业务系统中了。
一个秒杀系统的设计,可以根据不同级别的流量,由简单到复杂打造出不同的架构,本质是各方面的取舍和权衡。当然,你可能注意到,本文并没有涉及具体的选型方案,因为这些对于架构来说并不重要,作为架构师,应该时刻提醒自己主线是什么。
本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/_Mg20rBWNFQN1QCkbccu8A
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。