深入浅出Go泛型之泛型使用三步曲

发表于 2年以前  | 总阅读数:335 次

大家好, 又跟大家见面了。今天跟大家聊聊Go1.18中新增的泛型功能。。

01 Go中的泛型是什么

众所周知,Go是一门静态类型的语言。静态类型也就意味着在使用Go语言编程时,所有的变量、函数参数都需要指定具体的类型,同时在编译阶段编译器也会对指定的数据类型进行校验。这也意味着一个函数的输入参数和返回参数都必须要和具体的类型强相关,不能被不同类型的数据结构所复用。

而泛型就是要解决代码复用和编译期间类型安全检查的问题而生的。这里给出我理解的泛型的定义:

泛型是静态语言中的一种编程方式。这种编程方式可以让算法不再依赖于某个具体的数据类型,而是通过将数据类型进行参数化,以达到算法可复用的目的。

下面,我们通过一个函数的传统编写方式和泛型编写方式先来体验一下。

1.1 传统的函数编写方式

例如,我们有一个函数Max,其功能是计算整型切片中的最大元素,则其传统的编写方式如下:

func Max(s []int) int {
    if len(s) == 0 {
    return 0
    }

    max := s[0]
    for _, v := range s[1:] {
    if v > max {
        max = v
    }
    }

    return max
}

m1 := Max([]int{4, -8, 15})

在该示例中,Max函数的输入参数和返回值类型已经被指定都是int类型,不能使用其他类型的切片(例如s []float)。如果想要获取float类型的切片中的最大元素,则需要再写一个函数:

func MaxFloat(s []float) float {
    //...
}

传统的编写方式的缺点就是需要针对每一种类型都要编写一个函数,除了函数的参数中的类型不一样,其他逻辑完全一样。

接下来我们看看使用泛型的写法。

1.2 泛型函数编写方式

为了能够使编写的程序更具有可复用性,通用编程(Generic programming)也应运而生。使用泛型,函数或类型可以基于类型参数进行定义,并在调用该函数时动态指定具体的类型对其进行实例化,以达到函数或类型可以基于一组定义好的类型都能使用的目的。我们通过泛型将上述Max函数进行改写:

import (
    "fmt"
    "golang.org/x/exp/constraints"
)

func main() {
    m1 := Max[int]([]int{4, -8, 15})
    m2 := Max[float64]([]float64{4.1, -8.1, 15.1})

    fmt.Println(m1, m2)
}

// 定义泛型函数
func Max[T constraints.Ordered](s []T) T {
    var zero T
    if len(s) == 0 {
    return zero
    }
    var max T
    max = s[0]
    for _, v := range s[1:] {
    max = v
    if v > max {
        max = v
        }
    }

    return max
}

由以上示例可知,我们通过使用泛型改写了MaxNumber函数,在main函数中调用MaxNumber时,通过传入一个具体的类型就能复用MaxNumber的代码了。

好了,这里我们只是对泛型有了一个初探,至于泛型函数中的Tany等关键词暂时不用关系,在后面我们会详细讲解。

接下来我们从泛型被加入之前说起,从而更好的的理解泛型被加入的动机。

02 从泛型被加入之前说起

为了更好的理解为什么需要泛型,我们看看如果不使用泛型如何实现可复用的算法。还是以上面的返回切片中元素的最大值函数为例。

我们一般有以下几种方案:

  • 针对每一种类型编写一套重复的代码
  • 传递一个空接口interface{},使用类型断言来判断是哪种数据类型
  • 传递一个空接口interface{},使用反射机制来判断是哪种数据类型
  • 自定义接口类型,通过类型继承的方式实现具体逻辑

下面我们看上面每一种实现方法都有哪些缺点。

2.1 针对每一种类型编写一套重复的代码

这种方法我们在第一节中已经实现了。针对int切片和float切片各自实现一个函数,但在两个函数中只有切片的数据类型不同,其他逻辑都相同。

这种方法的主要缺点就是大量的重复代码。这两个函数中除了切片元素的数据类型不同之外,其他都一样。同时,大量重复的代码也降低了代码的可维护性。

2.2 使用空接口并通过类型断言来判定具体的类型

另外一种方法是函数接收一个空接口的参数。在函数内部使用类型断言和switch语句来选择是哪种具体的类型。最后将结果再包装到一个空接口中返回。如下:

func Max(s []interface{}) (interface{}, error) {
    if len(s) == 0 {
        return nil, errors.New("no values given")
    }

    switch first := s[0].(type) {
        case int:
            max := first
            for _, rawV := range s[1:] {
                v := rawV.(int)
                if v > max {
                    max = v
                }
            }
            return max, nil

        case float64:
            max := first
            for _, rawV := range s[1:] {
                v := rawV.(float64)
                if v > max {
                    max = v
                }
            } 
            return max, nil

         default:
             return nil, fmt.Errorf("unsupported element type of given slice: %T", first)
    }
}

// Usage
m1, err1 := Max([]interface{}{4, -8, 15})
m2, err2 := Max([]interface{}{4.1, -8.1, 15.1})

这种写法的主要有两个缺点。第一个缺点是在编译期间缺少类型安全检查。如果调用者传递了一个不支持的数据类型,该函数的实现应该是返回一个错误。第二个缺点是这种实现的可用性也不是很好。因为无论是调用者处理返回值还是在函数内部的实现代码都需要将具体的类型包装在一个空接口中,并使用类型断言来判断接口里的具体的类型。

2.3 传递空接口并使用反射解析具体类型

在从空接口中解析具体的类型时,我们还可以通过反射替代类型断言。如下实现:

func Max(s []interface{}) (interface{}, error) {
    if len(s) == 0 {
    return nil, errors.New("no values given")
    }

    first := reflect.ValueOf(s[0])

    if first.Type().Name() == "int"  {
        max := first.Int()
        for _, ifV := range s[1:] {
            v := reflect.ValueOf(ifV)
            if v.Type().Name() == "int" {
                intV := v.Int()
        if intV > max {
                    max = intV
        }
            }
    }
    return max, nil
    }

    if first.Type().Name() == "float64" {
        max := first.Float()
    for _, ifV := range s[1:] {
            v := reflect.ValueOf(ifV)
            if v.Type().Name() == "float64" {
                intV := v.Float()
        if intV > max {
                    max = intV
        }
            }
    }
    return max, nil
    }

    return nil, fmt.Errorf("unsupported element type of given slice: %T", s[0])
}

// Usage
m1, err1 := Max([]interface{}{4, -8, 15})
m2, err2 := Max([]interface{}{4.1, -8.1, 15.1})

在这种方法中,在编译期间不仅没有类型的安全检查,同时可读性也差。而且在使用反射时,性能通常也会比较差。

2.4 通过自定义接口类型实现

另外一种方法,我们可以通过给函数传递一个具体的,预定义好的接口来实现。该接口应该包含该函数要实现的功能的必备方法。只要实现了该接口的类型,该方法就都可以支持。我们还是以上面的MaxNumber函数为例,应该有获取元素个数的方法Len,比较大小的方法Less以及获取元素的方法Elem。我们来看看具体的实现:

type ComparableSlice interface {
    // 返回切片的元素个数.
    Len() int
    // 比较索引i的元素值是否比索引j的元素值要小
    Less(i, j int) bool
    // 返回索引i位置的元素
    Elem(i int) interface{}
}

func Max(s ComparableSlice) (interface{}, error) {
    if s.Len() == 0 {
        return nil, errors.New("no values given")
    }

    max := s.Elem(0)
    for i := 1; i < s.Len(); i++ {
        if s.Less(i-1, i) {
            max = s.Elem(i)
        }
    }

    return max, nil
}

type ComparableIntSlice []int

func (s ComparableIntSlice) Len() int { return len(s) }
func (s ComparableIntSlice) Less(i, j int) bool { return s[i] < s[j] }
func (s ComparableIntSlice) Elem(i int) interface{} { return s[i] }

type ComparableFloat64Slice []float64

func (s ComparableFloat64Slice) Len() int { return len(s) }
func (s ComparableFloat64Slice) Less(i, j int) bool { return s[i] < s[j] }
func (s ComparableFloat64Slice) Elem(i int) interface{} {return s[i]}

// Usage
m1, err1 := Max(ComparableIntSlice([]int{4, -8, 15}))
m2, err2 := Max(ComparableFloat64Slice([]float64{4.1, -8.1, 15.1}))

在该实现中,我们定义了一个ComparableSlice接口,其中ComparableIntSliceComparableFloat64Slice两个具体的类型都实现了该接口,分别对应int类型切片和float64类型切片。

该实现的一个明显的缺点是难以使用。因为调用者必须将数据封装到一个自定义的类型中(在该示例中是ComparableIntSlice和ComparableFloat64Slice),并且该自定义类型要实现已定义的接口ComparableSlice。

由以上示例可知,在有泛型功能之前,要想在Go中实现处理多种类型的可复用的函数,都会带来一些问题。而泛型机制正是避免上述各种问题的解决方法。

03 深入理解泛型--泛型使用“三步曲”

在文章第一节处我们已经提到过泛型要解决的问题--程序针对一组类型可进行复用。下面我们给出泛型函数的一般形式,如下图:

由上图的泛型函数的一般定义形式可知,使用泛型可以分三步,我将其称之为“泛型使用三步曲”。

3.1 第一步:类型参数化

在定义泛型函数时,使用中括号给出类型参数类型,并在函数所接收的参数中使用该类型参数,而非具体类型,就是所谓的类型参数化。还是以上面的泛型函数为例:

func Max[T constraints.Ordered](s []T) T {
    var zero T
    if len(s) == 0 {
    return zero
    }

    var max T
    max = s[0]
    for _, v := range s[1:] {
    max = v
    if v > max {
            max = v
    }
    }

    return max
}

其中T被称为类型参数,即不再是一个具体的类型值,而是需要在调用该函数时再动态的传入一个类型值(例如int,float64),以实例化化T。例如:Max[int](s[]int{4,-8,15}),那么T就代表的是int。

当然,类型参数列表中可以有多个类型参数,多个类型参数之间用逗号隔开即可。类型参数名也不一定非要用T,任何符合变量规则的名称都可以。

3.2 第二步:给类型添加约束

在上图中,any被称为是类型约束,用来描述传给T的类型值应该满足什么样的条件,不满足约束的类型传给T时会被报编译错误,这样就实现了类型的安全机制。当然类型约束不仅仅像any这么简单。

在Go中类型约束分两类,分别是Go官方支持的内建类型约束(包括内建的类型约束any、comparable和在golang.org/x/exp/constraints 包中定义的类型约束)和自定义类型约束。因为在Go中泛型的约束是通过接口来实现的,所以我们可以通过定义接口来自定义类型约束。

3.2.1 Go官方支持的内建类型约束

其中Go内建的类型约束和constraints包定义的类型约束我们统一成为Go官方定义的类型约束。之所以是在golang.org/x/exp/constraints包中,是因为该约束带有实验性质。

下面我们列出了Go官方支持的预定义的类型约束:

约束 描述 位置
any 任意类型;可以看做是空接口interface{}的别名 go内建
comparable 可比较的值类型,即该类型的值可以使用==和!=操作符进行比较(例如bool、数字类型、字符串、指针、通道、接口、值是可比较类型的数组、字段都是可比较类型的结构体等) go内建
Signed - 有符号整型 ~int ~int8 ~int16 ~int32 ~int64 golang.org/x/exp/constraints
Unsigned - 有符号整型 ~uint ~uint8 ~uint16 ~uint32 ~uint64 ~uintptr golang.org/x/exp/constraints
Integer - 整型 Signed Unsigne golang.org/x/exp/constraints
Float - 浮点型 ~float32 ~float64 golang.org/x/exp/constraints
Complex - 复数型 ~complex64 ~complex128 golang.org/x/exp/constraints
Ordered Integer Float ~string(支持<、<=、>=、>操作符的任意类型) golang.org/x/exp/constraints

3.2.2 自定义类型约束

由上面可知,类型的约束本质上是一个接口。所以,如果官方提供的类型约束不满足自己的业务场景下,可以按照Go中泛型的语法规则自定义类型约束即可。类型约束的定义一般有两种形式:定义成接口形式直接定义在类型参数列表中。下面我们分别来看下各自的使用方法。

  • 定义成接口形式

下面是定义成接口形式的类型约束示例:

// 自定义类型约束接口StringableFloat
type StringableFloat interface {
    ~float32 | ~float64 // 底层是float32或float64的类型就能满足该约束
    String() string
}

// MyFloat 是满足StringableFloat类型约束的float类型。
type MyFloat float64 

// 实现类型约束中的String方法
func (m MyFloat) String() string {
    return fmt.Sprintf("%e", m)
}

//泛型函数,对类型参数T使用了StringableFloat约束
func StringifyFloat[T StringableFloat](f T) string {
    return f.String()
}
// Usage
var f MyFloat = 48151623.42

//使用MyFloat类型对T进行实例化
s := StringifyFloat[MyFloat](f)

在该示例中,函数StringifyFloat是一个泛型函数,并使用StringableFloat接口来对T进行约束。MyFloat类型是一个满足StringableFloat约束的具体类型。

在泛型中,类型约束被定义成了接口,该接口中可以包含具体类型的集合和方法。在该示例中,StringfyFloat类型约束包含float32和float64两个类型以及一个String()方法。该约束允许任何满足该接口的具体类型都可以实例化参数T。

在上述示例中,我们还看到一个新的关键符号:~~T代表所有的类型的底层类型必须是类型T。在这里类型MyFloat是一个自定义的类型,但其底层类型或叫做基础类型是float64。因此,MyFloat是满足StringifyFloat约束的。

另外,在定义类型约束接口中,也可以引入类型参数。如下示例中,在类型约束SliceConstraints中的切片类型引入了类型参数E,这样该约束就可以对任意类型的切片进行约束了。

package main

import (
    "fmt"
    "golang.org/x/exp/constraints"
)

func main() {
    r1 := FirstElem1[[]string, string]([]string{"Go", "rocks"})
    r2 := FirstElem1[[]int, int]([]int{1, 2})

    fmt.Println(r1, r2)
}

// 定义类型约束,并引入类型参数E
type SliceConstraint[E any] interface {
    ~[]E
}

// 泛型函数
func FirstElem1[S SliceConstraint[E], E any](s S) E {
    return s[0]
}
  • 在类型参数列表中直接定义约束

下面的示例中,FirstElem2、FirstElem3泛型函数将类型约束直接定义在了类型参数列表中,我把它称之为匿名类型约束接口,类似于匿名函数。如下示例代码,三个泛型函数是等价的:

package main

import (
    "fmt"
    "golang.org/x/exp/constraints"
)

func main() {
    s := []string{"Go", "rocks"}
    r1 := FirstElem1[[]string, string](s)
    r2 := FirstElem2[[]string, string](s)
    r3 := FirstElem3[[]string, string](s)

    fmt.Println(r1, r2, r3)
}

type SliceConstraint[E any] interface {
    ~[]E
}

func FirstElem1[S SliceConstraint[E], E any](s S) E {
    return s[0]
}

func FirstElem2[S interface{ ~[]E }, E any](s S) E {
    return s[0]
}

func FirstElem3[S ~[]E, E any](s S) E {
    return s[0]
}

3.3 第三步:类型参数实例化

在调用泛型函数时,需要给函数的类型参数指定具体的类型,叫做类型实例化。还是以上面的Max函数为例,我们在Max后面的中括号中指定了int类型:

r2 := Max[int]([]int{4, 8, 15})

其中有一点需要注意,在类型参数实例化时,还有一种方式是不需要指定具体的类型,这时在编译阶段,编译器会根据函数的参数自动推导出来T的实际参数值: r3 := Max([]float64{4.1, -8.1, 15.1})。这里Max后面并没有给出中括号以及对应的具体类型,但Go编译器能根据切片元素类型自动推断出是float64类型。

04 泛型类型约束和普通接口的区别

首先二者都是接口,都可以定义方法。但类型约束接口中可以定义具体类型,例如上文中自定义的StringableFloat类型约束接口中的类型约束:~float32 | ~float64

type StringableFloat interface {
    ~float32 | ~float64 // 底层是float32或float64的类型就能满足该约束
    String() string
}

当接口中存在类型约束时,这时该接口就只能被用于泛型类型参数的约束。

05 总结

泛型在Go1.18中才被加入实际上是有其原因的。之前一直都有泛型的提案,但一直没被加入到该语言中,其中一个很重要的原因就是因为之前的泛型提案不够简单。而Go又是以简单著称的语言,所以只有泛型的实现方案足够简单,同时对Go之前的版本又兼容时才被加入进来。

本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/1qtAMerSS3hqCLVlXf670Q

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237227次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8063次阅读
 目录