消息队列:从选型到原理,一文带你全部掌握

发表于 2年以前  | 总阅读数:425 次

RabbitMQ、Kafka、RocketMQ和ActiveMQ,肝了我一个月,原理是什么,如何选型,本文会告诉你答案。

消息队列中间件重要吗?面试必问问题之一,你说重不重要。我有时会问同事,为啥你用RabbitMQ,不用Kafka,或者RocketMQ呢,他给我的回答“因为公司用的就是这个,大家都这么用”,如果你去面试,直接就被Pass,今天这篇文章,告诉你如何回答。

这篇文章纯理论,主要整理网络资料,肝了我整整一个月!文章依然延续上几篇的风格,很长,长到我只整理排版,手都整麻了。全文2.5万字,建议先收藏,后续面试、或者技术选型,再拿出来喵喵,不BB,上思维导图!

什么?你不想看“八股文”,只想实操,直接看[《入门RabbitMQ,这一篇绝对够!》] ,给你开个快速通道。

消息队列

消息队列模式

消息队列目前主要2种模式,分别为“点对点模式”和“发布/订阅模式”。

点对点模式

一个具体的消息只能由一个消费者消费。多个生产者可以向同一个消息队列发送消息;但是,一个消息在被一个消息者处理的时候,这个消息在队列上会被锁住或者被移除并且其他消费者无法处理该消息。需要额外注意的是,如果消费者处理一个消息失败了,消息系统一般会把这个消息放回队列,这样其他消费者可以继续处理。

发布/订阅模式

单个消息可以被多个订阅者并发的获取和处理。一般来说,订阅有两种类型:

  • 临时(ephemeral)订阅,这种订阅只有在消费者启动并且运行的时候才存在。一旦消费者退出,相应的订阅以及尚未处理的消息就会丢失。
  • 持久(durable)订阅,这种订阅会一直存在,除非主动去删除。消费者退出后,消息系统会继续维护该订阅,并且后续消息可以被继续处理。

衡量标准

对消息队列进行技术选型时,需要通过以下指标衡量你所选择的消息队列,是否可以满足你的需求:

  • 消息顺序:发送到队列的消息,消费时是否可以保证消费的顺序,比如A先下单,B后下单,应该是A先去扣库存,B再去扣,顺序不能反。
  • 消息路由:根据路由规则,只订阅匹配路由规则的消息,比如有A/B两者规则的消息,消费者可以只订阅A消息,B消息不会消费。
  • 消息可靠性:是否会存在丢消息的情况,比如有A/B两个消息,最后只有B消息能消费,A消息丢失。
  • 消息时序:主要包括“消息存活时间”和“延迟/预定的消息”,“消息存活时间”表示生产者可以对消息设置TTL,如果超过该TTL,消息会自动消失;“延迟/预定的消息”指的是可以延迟或者预订消费消息,比如延时5分钟,那么消息会5分钟后才能让消费者消费,时间未到的话,是不能消费的。
  • 消息留存:消息消费成功后,是否还会继续保留在消息队列。
  • 容错性:当一条消息消费失败后,是否有一些机制,保证这条消息是一种能成功,比如异步第三方退款消息,需要保证这条消息消费掉,才能确定给用户退款成功,所以必须保证这条消息消费成功的准确性。
  • 伸缩:当消息队列性能有问题,比如消费太慢,是否可以快速支持库容;当消费队列过多,浪费系统资源,是否可以支持缩容。
  • 吞吐量:支持的最高并发数。

消息队列比较

下图是从网上摘抄过来的,可以看到主流MQ的对比:

下面简单介绍常用的消息队列:

  • Kafka:Apache Kafka它最初由LinkedIn公司基于独特的设计实现为一个分布式的提交日志系统( a distributed commit log),之后成为Apache项目的一部分。号称大数据的杀手锏,谈到大数据领域内的消息传输,则绕不开Kafka,这款为大数据而生的消息中间件,以其百万级TPS的吞吐量名声大噪,迅速成为大数据领域的宠儿,在数据采集、传输、存储的过程中发挥着举足轻重的作用。
  • RabbitMQ:RabbitMQ 2007年发布,是使用Erlang语言开发的开源消息队列系统,基于AMQP协议来实现。AMQP的主要特征是面向消息、队列、路由(包括点对点和发布/订阅)、可靠性、安全。AMQP协议更多用在企业系统内,对数据一致性、稳定性和可靠性要求很高的场景,对性能和吞吐量的要求还在其次。
  • RocketMQ:是阿里开源的消息中间件,它是纯Java开发,具有高吞吐量、高可用性、适合大规模分布式系统应用的特点。RocketMQ思路起源于Kafka,但并不是Kafka的一个Copy,它对消息的可靠传输及事务性做了优化,目前在阿里集团被广泛应用于交易、充值、流计算、消息推送、日志流式处理、binglog分发等场景。
  • ActiveMQ:是Apache出品,最流行的,能力强劲的开源消息总线。官方社区现在对ActiveMQ 5.x维护越来越少,较少在大规模吞吐的场景中使用,所以该消息队列也不是我们文章中重点讨论的内容。

优缺点

Kafka

优点:

  • 高吞吐、低延迟:kakfa 最大的特点就是收发消息非常快,kafka 每秒可以处理几十万条消息,它的最低延迟只有几毫秒;
  • 高伸缩性:每个主题(topic) 包含多个分区(partition),主题中的分区可以分布在不同的主机(broker)中;
  • 持久性、可靠性:Kafka 能够允许数据的持久化存储,消息被持久化到磁盘,并支持数据备份防止数据丢失,Kafka 底层的数据存储是基于 Zookeeper 存储的,Zookeeper 我们知道它的数据能够持久存储;
  • 容错性:非常高,kafka是分布式的,一个数据多个副本,某个节点宕机,Kafka 集群能够正常工作;
  • 消息有序:消费者采用Pull方式获取消息,消息有序,通过控制能够保证所有消息被消费且仅被消费一次;
  • 有优秀的第三方Kafka Web管理界面Kafka-Manager,在日志领域比较成熟,被多家公司和多个开源项目使用;
  • 功能支持:功能较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用。

缺点:

  • Kafka单机超过64个队列/分区,Load会发生明显的飙高现象,队列越多,load越高,发送消息响应时间变长;
  • 使用短轮询方式,实时性取决于轮询间隔时间;
  • 消费失败不支持重试;
  • 支持消息顺序,但是一台代理宕机后,就会产生消息乱序;
  • 社区更新较慢。

总结:

  • Kafka主要特点是基于Pull的模式来处理消息消费,追求高吞吐量,一开始的目的就是用于日志收集和传输,适合产生大量数据的互联网服务的数据收集业务。
  • 大型公司建议可以选用,如果有日志采集功能,肯定是首选kafka。

RabbitMQ

优点:

  • 异步消息传递:支持多种消息协议,消息队列,传送确认,灵活的路由到队列,多种交换类型;
  • 支持几乎所有最受欢迎的编程语言:Java,C,C ++,C#,Ruby,Perl,Python,PHP等等;
  • 可以部署为高可用性和吞吐量的集群;,跨多个可用区域和区域进行联合;
  • 可插入的身份验证,授权,支持TLS和LDAP;
  • 提供了许多插件,来从多方面进行扩展,也可以编写自己的插件;
  • 提供了一个易用的用户界面,使得用户可以监控和管理消息Broker,社区活跃度高。

缺点:

  • erlang开发,很难去看懂源码,基本职能依赖于开源社区的快速维护和修复bug,不利于做二次开发和维护;
  • RabbitMQ确实吞吐量会低一些,这是因为他做的实现机制比较重;
  • 需要学习比较复杂的接口和协议,学习和维护成本较高。

总结:

  • 结合erlang语言本身的并发优势,性能较好,社区活跃度也比较高,但是不利于做二次开发和维护。不过RabbitMQ的社区十分活跃,可以解决开发过程中遇到的bug。
  • 如果你的数据量没有那么大,小公司优先选择功能比较完备的RabbitMQ。

RocketMQ

优点:

  • 支持发布/订阅(Pub/Sub)和点对点(P2P)消息模型;
  • 在一个队列中可靠的先进先出(FIFO)和严格的顺序传递;
  • 支持拉(pull)和推(push)两种消息模式;
  • 单一队列百万消息的堆积能力;
  • 支持多种消息协议,如 JMS、MQTT 等;
  • 可靠的FIFO和严格的有序消息传递在同一队列中;
  • 灵活的分布式横向扩展部署架构,满足至少一次消息传递语义;
  • 提供 docker 镜像用于隔离测试和云集群部署;
  • 提供配置、指标和监控等功能丰富的 Dashboard。

缺点:

  • 支持的客户端语言不多,目前是java及c++,其中c++不成熟
  • 社区活跃度一般
  • 没有在 mq 核心中去实现JMS等接口,有些系统要迁移需要修改大量代码

总结:

  • 天生为金融互联网领域而生,对于可靠性要求很高的场景,尤其是电商里面的订单扣款,以及业务削峰,在大量交易涌入时,后端可能无法及时处理的情况。
  • RoketMQ在稳定性上可能更值得信赖,这些业务场景在阿里双11已经经历了多次考验,如果你的业务有上述并发场景,建议可以选择RocketMQ。

ActiveMQ

优点

  • 支持来自Java,C,C ++,C#,Ruby,Perl,Python,PHP的各种跨语言客户端和协议;
  • 完全支持JMS客户端和Message Broker中的企业集成模式;
  • 支持许多高级功能,如消息组,虚拟目标,通配符和复合目标;
  • 完全支持JMS 1.1和J2EE 1.4,支持瞬态,持久,事务和XA消息;
  • Spring支持,以便ActiveMQ可以轻松嵌入到Spring应用程序中,并使用Spring的XML配置机制进行配置;
  • 专为高性能集群,客户端 - 服务器,基于对等的通信而设计;
  • CXF和Axis支持,以便ActiveMQ可以轻松地放入这些Web服务堆栈中以提供可靠的消息传递;
  • 可以用作内存JMS提供程序,非常适合单元测试JMS;
  • 支持可插拔传输协议,例如in-VM,TCP,SSL,NIO,UDP,多播,JGroups和JXTA传输;
  • 使用JDBC和高性能日志支持非常快速的持久性。

缺点:

  • 官方社区现在对ActiveMQ 5.x维护越来越少,较少在大规模吞吐的场景中使用。

Kafka

Kafka 是由 Linkedin 公司开发的,它是一个分布式的,支持多分区、多副本,基于 Zookeeper 的分布式消息流平台,它同时也是一款开源的基于发布订阅模式的消息引擎系统。

基本概念

  • 消息:Kafka 中的数据单元被称为消息,也被称为记录,可以把它看作数据库表中某一行的记录。
  • 批次:为了提高效率, 消息会分批次写入 Kafka,批次就代指的是一组消息。
  • 主题:消息的种类称为 主题(Topic),可以说一个主题代表了一类消息,相当于是对消息进行分类。主题就像是数据库中的表。
  • 分区:主题可以被分为若干个分区(partition),同一个主题中的分区可以不在一个机器上,有可能会部署在多个机器上,由此来实现 kafka 的伸缩性,单一主题中的分区有序,但是无法保证主题中所有的分区有序。

  • 生产者:向主题发布消息的客户端应用程序称为生产者(Producer),生产者用于持续不断的向某个主题发送消息。
  • 消费者:订阅主题消息的客户端程序称为消费者(Consumer),消费者用于处理生产者产生的消息。
  • 消费者群组:生产者与消费者的关系就如同餐厅中的厨师和顾客之间的关系一样,一个厨师对应多个顾客,也就是一个生产者对应多个消费者,消费者群组(Consumer Group)指的就是由一个或多个消费者组成的群体。

  • 偏移量:偏移量(Consumer Offset)是一种元数据,它是一个不断递增的整数值,用来记录消费者发生重平衡时的位置,以便用来恢复数据。
  • broker: 一个独立的 Kafka 服务器就被称为 broker,broker 接收来自生产者的消息,为消息设置偏移量,并提交消息到磁盘保存。
  • broker 集群:broker 是集群 的组成部分,broker 集群由一个或多个 broker 组成,每个集群都有一个 broker 同时充当了集群控制器的角色(自动从集群的活跃成员中选举出来)。
  • 副本:Kafka 中消息的备份又叫做 副本(Replica),副本的数量是可以配置的,Kafka 定义了两类副本:领导者副本(Leader Replica) 和 追随者副本(Follower Replica),前者对外提供服务,后者只是被动跟随。
  • 重平衡:Rebalance。消费者组内某个消费者实例挂掉后,其他消费者实例自动重新分配订阅主题分区的过程。Rebalance 是 Kafka 消费者端实现高可用的重要手段。

系统架构

一个典型的 Kafka 集群中包含若干Producer(可以是web前端产生的Page View,或者是服务器日志,系统CPU、Memory等),若干broker(Kafka支持水平扩展,一般broker数量越多,集群吞吐率越高),若干Consumer Group,以及一个Zookeeper集群。Kafka通过Zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行rebalance。Producer使用push模式将消息发布到broker,Consumer使用pull模式从broker订阅并消费消息。

生产者

数据执行流程

在 Kafka 中,我们把产生消息的那一方称为生产者,比如我们经常回去淘宝购物,你打开淘宝的那一刻,你的登陆信息,登陆次数都会作为消息传输到 Kafka 后台,当你浏览购物的时候,你的浏览信息,你的搜索指数,你的购物爱好都会作为一个个消息传递给 Kafka 后台,然后淘宝会根据你的爱好做智能推荐,致使你的钱包从来都禁不住诱惑,那么这些生产者产生的消息是怎么传到 Kafka 应用程序的呢?发送过程是怎么样的呢?

尽管消息的产生非常简单,但是消息的发送过程还是比较复杂的,如图:

我们从创建一个ProducerRecord 对象开始,ProducerRecord 是 Kafka 中的一个核心类,它代表了一组 Kafka 需要发送的 key/value 键值对,它由记录要发送到的主题名称(Topic Name),可选的分区号(Partition Number)以及可选的键值对构成。

在发送 ProducerRecord 时,我们需要将键值对对象由序列化器转换为字节数组,这样它们才能够在网络上传输。然后消息到达了分区器。如果发送过程中指定了有效的分区号,那么在发送记录时将使用该分区。如果发送过程中未指定分区,则将使用key 的 hash 函数映射指定一个分区。如果发送的过程中既没有分区号也没有,则将以循环的方式分配一个分区。选好分区后,生产者就知道向哪个主题和分区发送数据了。ProducerRecord 还有关联的时间戳,如果用户没有提供时间戳,那么生产者将会在记录中使用当前的时间作为时间戳。Kafka 最终使用的时间戳取决于 topic 主题配置的时间戳类型。然后,这条消息被存放在一个记录批次里,这个批次里的所有消息会被发送到相同的主题和分区上。由一个独立的线程负责把它们发到 Kafka Broker 上。

Kafka Broker 在收到消息时会返回一个响应,如果写入成功,会返回一个 RecordMetaData 对象,它包含了主题和分区信息,以及记录在分区里的偏移量,上面两种的时间戳类型也会返回给用户。如果写入失败,会返回一个错误。生产者在收到错误之后会尝试重新发送消息,几次之后如果还是失败的话,就返回错误消息。

上面写的有点多,总结一下流程:创建对象(主题、分区、key/value)-> 序列化数据 -> 到达分区(可自己指定,也可以通过key hash)-> 放入批次(相同主题和分区) -> 独立线程发送 -> 返回主题/分区/分区偏移量/时间戳。

分区策略

Kafka 对于数据的读写是以分区为粒度的,分区可以分布在多个主机(Broker)中,这样每个节点能够实现独立的数据写入和读取,并且能够通过增加新的节点来增加 Kafka 集群的吞吐量,通过分区部署在多个 Broker 来实现负载均衡的效果,下面我们看看数据如何选择分区。

方式1:顺序轮询

顺序分配,消息是均匀的分配给每个 partition,即每个分区存储一次消息,见下图。轮训策略是 Kafka Producer 提供的默认策略,如果你不使用指定的轮训策略的话,Kafka 默认会使用顺序轮训策略的方式。

方式2:随机轮询

本质上看随机策略也是力求将数据均匀地打散到各个分区,但从实际表现来看,它要逊于轮询策略,所以如果追求数据的均匀分布,还是使用轮询策略比较好。事实上,随机策略是老版本生产者使用的分区策略,在新版本中已经改为轮询了。

方式3:key hash

这个策略也叫做 key-ordering 策略,Kafka 中每条消息都会有自己的key,一旦消息被定义了 Key,那么你就可以保证同一个 Key 的所有消息都进入到相同的分区里面,由于每个分区下的消息处理都是有顺序的,故这个策略被称为按消息键保序策略,如下图所示

消费者

消费者群组

应用程序使用 KafkaConsumer 从 Kafka 中订阅主题并接收来自这些主题的消息,然后再把他们保存起来。应用程序首先需要创建一个 KafkaConsumer 对象,订阅主题并开始接受消息,验证消息并保存结果。一段时间后,生产者往主题写入的速度超过了应用程序验证数据的速度,这时候该如何处理?如果只使用单个消费者的话,应用程序会跟不上消息生成的速度,就像多个生产者像相同的主题写入消息一样,这时候就需要多个消费者共同参与消费主题中的消息,对消息进行分流处理。Kafka 消费者从属于消费者群组。一个群组中的消费者订阅的都是相同的主题,每个消费者接收主题一部分分区的消息。下面是一个 Kafka 分区消费示意图。

上图中的主题 T1 有四个分区,分别是分区0、分区1、分区2、分区3,我们创建一个消费者群组1,消费者群组中只有一个消费者,它订阅主题T1,接收到 T1 中的全部消息。由于一个消费者处理四个生产者发送到分区的消息,压力有些大,需要帮手来帮忙分担任务,于是就演变为下图

这样一来,消费者的消费能力就大大提高了,但是在某些环境下比如用户产生消息特别多的时候,生产者产生的消息仍旧让消费者吃不消,那就继续增加消费者。

如上图所示,每个分区所产生的消息能够被每个消费者群组中的消费者消费,如果向消费者群组中增加更多的消费者,那么多余的消费者将会闲置,如下图所示。

向群组中增加消费者是横向伸缩消费能力的主要方式。总而言之,我们可以通过增加消费组的消费者来进行水平扩展提升消费能力。这也是为什么建议创建主题时使用比较多的分区数,这样可以在消费负载高的情况下增加消费者来提升性能。另外,消费者的数量不应该比分区数多,因为多出来的消费者是空闲的,没有任何帮助。

Kafka 一个很重要的特性就是,只需写入一次消息,可以支持任意多的应用读取这个消息。换句话说,每个应用都可以读到全量的消息。为了使得每个应用都能读到全量消息,应用需要有不同的消费组。对于上面的例子,假如我们新增了一个新的消费组 G2,而这个消费组有两个消费者,那么就演变为下图这样。在这个场景中,消费组 G1 和消费组 G2 都能收到 T1 主题的全量消息,在逻辑意义上来说它们属于不同的应用。

总结起来就是如果应用需要读取全量消息,那么请为该应用设置一个消费组;如果该应用消费能力不足,那么可以考虑在这个消费组里增加消费者。

消费者重平衡

我们从上面的消费者演变图中可以知道这么一个过程:最初是一个消费者订阅一个主题并消费其全部分区的消息,后来有一个消费者加入群组,随后又有更多的消费者加入群组,而新加入的消费者实例分摊了最初消费者的部分消息,这种把分区的所有权通过一个消费者转到其他消费者的行为称为重平衡,英文名也叫做 Rebalance 。如下图所示。

重平衡非常重要,它为消费者群组带来了高可用性 和 伸缩性,我们可以放心的添加消费者或移除消费者,不过在正常情况下我们并不希望发生这样的行为。在重平衡期间,消费者无法读取消息,造成整个消费者组在重平衡的期间都不可用。另外,当分区被重新分配给另一个消费者时,消息当前的读取状态会丢失,它有可能还需要去刷新缓存,在它重新恢复状态之前会拖慢应用程序。

消费者通过向组织协调者(Kafka Broker)发送心跳来维护自己是消费者组的一员并确认其拥有的分区。对于不同不的消费群体来说,其组织协调者可以是不同的。只要消费者定期发送心跳,就会认为消费者是存活的并处理其分区中的消息。当消费者检索记录或者提交它所消费的记录时就会发送心跳。如果过了一段时间 Kafka 停止发送心跳了,会话(Session)就会过期,组织协调者就会认为这个 Consumer 已经死亡,就会触发一次重平衡。如果消费者宕机并且停止发送消息,组织协调者会等待几秒钟,确认它死亡了才会触发重平衡。在这段时间里,死亡的消费者将不处理任何消息。在清理消费者时,消费者将通知协调者它要离开群组,组织协调者会触发一次重平衡,尽量降低处理停顿。

重平衡是一把双刃剑,它为消费者群组带来高可用性和伸缩性的同时,还有有一些明显的缺点(bug),而这些 bug 到现在社区还无法修改。重平衡的过程对消费者组有极大的影响。因为每次重平衡过程中都会导致万物静止,参考 JVM 中的垃圾回收机制,也就是 Stop The World ,STW。也就是说,在重平衡期间,消费者组中的消费者实例都会停止消费,等待重平衡的完成。而且重平衡这个过程很慢...

特性分析

这里才是内容的重点,不仅需要知道Kafka的特性,还需要知道支持这些特性的原因:

  • 消息路由(不支持):Kafka在处理消息之前是不允许消费者过滤一个主题中的消息。一个订阅的消费者在没有异常情况下会接受一个分区中的所有消息。
  • 消息有序(支持):当消费消息时,如果消费失败,消息不会被放回,所以整个消费过程都是有序进行;
  • 消息时序(不支持):消息直接发送,不会延迟发送,或者指定消息的TTL。
  • 容错处理(集群支持/消息不支持):集群容错能力高,因为是分布式部署,但是消息容错处理弱,因为消息消费失败,需要程序员手动处理,Kafka不支持消息重新进行消费。
  • 伸缩(非常好):通过扩充分区和消费者数量,实现分区扩容,并提升消费速度。
  • 持久化(非常好):数据存储在磁盘,可以随时订阅消费,消费完后,数据仍然保留。
  • 消息回溯(支持):因为消息支持持久化,就支持回溯,可以理解是附带的功能。
  • 高吞吐(非常好):因为Kafka内部同一个主题包含多个分区,所以实现分布式存储,然后消费者数量可以扩充到和分区数量一致,保证了Kafka的高吞吐。

RocketMQ

RocketMQ是一个纯Java、分布式、队列模型的开源消息中间件,前身是MetaQ,是阿里参考Kafka特点研发的一个队列模型的消息中间件,后开源给apache基金会成为了apache的顶级开源项目,具有高性能、高可靠、高实时、分布式特点。

基本概念

先对常用的词汇有个基本认识,相关词汇后面会再详细介绍:

  • NameServer:一个功能齐全的服务器,其角色类似Dubbo中的Zookeeper。
  • Producer:消息生产者,负责产生消息,一般由业务系统负责产生消息。
  • Consumer:消息消费者,负责消费消息,一般是后台系统负责异步消费。
  • Broker:消息中转角色,负责存储消息,转发消息。
  • Message:消息,一条消息必须有一个主题(Topic),主题可以看做是你的信件要邮寄的地址。(一条消息也可以拥有一个可选的标签(Tag)和额处的键值对,它们可以用于设置一个业务 Key 并在 Broker 上查找此消息以便在开发期间查找问题。)
  • Topic:主题,可以看做消息的规类,它是消息的第一级类型。(比如一个电商系统可以分为:交易消息、物流消息等,一条消息必须有一个 Topic 。Topic 与生产者和消费者的关系非常松散,一个 Topic 可以有0个、1个、多个生产者向其发送消息,一个生产者也可以同时向不同的 Topic 发送消息。一个 Topic 也可以被 0个、1个、多个消费者订阅。)
  • Tag:子主题,它是消息的第二级类型,用于为用户提供额外的灵活性。(使用标签,同一业务模块不同目的的消息就可以用相同 Topic 而不同的 Tag 来标识。比如交易消息又可以分为:交易创建消息、交易完成消息等,一条消息可以没有 Tag 。标签有助于保持您的代码干净和连贯,并且还可以为 RocketMQ 提供的查询系统提供帮助。)
  • Group:分组,一个组可以订阅多个Topic。(分为ProducerGroup,ConsumerGroup,代表某一类的生产者和消费者,一般来说同一个服务可以作为Group,同一个Group一般来说发送和消费的消息都是一样的。)
  • Producer Group:生产者组,代表某一类的生产者,比如我们有多个秒杀系统作为生产者,这多个合在一起就是一个 Producer Group 生产者组,它们一般生产相同的消息。
  • Consumer Group:消费者组,代表某一类的消费者,比如我们有多个短信系统作为消费者,这多个合在一起就是一个 Consumer Group 消费者组,它们一般消费相同的消息。
  • Queue:队列,在Kafka中叫Partition。(每个Queue内部是有序的,在RocketMQ中分为读和写两种队列,一般来说读写队列数量一致,如果不一致就会出现很多问题。)
  • Message Queue:消息队列,主题被划分为一个或多个子主题,即消息队列。(一个 Topic 下可以设置多个消息队列,发送消息时执行该消息的 Topic ,RocketMQ 会轮询该 Topic 下的所有队列将消息发出去。消息的物理管理单位。一个Topic下可以有多个Queue,Queue的引入使得消息的存储可以分布式集群化,具有了水平扩展能力。)

消息模型

RockerMQ 中的消息模型就是按照主题模型所实现的,在主题模型中,消息的生产者称为发布者(Publisher),消息的消费者称为订阅者(Subscriber),存放消息的容器称为主题(Topic)。RocketMQ 中的主题模型到底是如何实现的呢?

我们可以看到在整个图中有 Producer Group、Topic、Consumer Group 三个角色,你可以看到图中生产者组中的生产者会向主题发送消息,而主题中存在多个队列,生产者每次生产消息之后是指定主题中的某个队列发送消息的。

每个主题中都有多个队列(这里还不涉及到 Broker),集群消费模式下,一个消费者集群多台机器共同消费一个 topic 的多个队列,一个队列只会被一个消费者消费。如果某个消费者挂掉,分组内其它消费者会接替挂掉的消费者继续消费。就像上图中 Consumer1 和 Consumer2 分别对应着两个队列,而 Consuer3 是没有队列对应的,所以一般来讲要控制消费者组中的消费者个数和主题中队列个数相同。这个简直和kafak一毛一样啊!

当然也可以消费者个数小于队列个数,只不过不太建议。如下图:

每个消费组在每个队列上维护一个消费位置,为什么呢?因为我们刚刚画的仅仅是一个消费者组,我们知道在发布订阅模式中一般会涉及到多个消费者组,而每个消费者组在每个队列中的消费位置都是不同的。如果此时有多个消费者组,那么消息被一个消费者组消费完之后是不会删除的(因为其它消费者组也需要呀),它仅仅是为每个消费者组维护一个消费位移(offset),每次消费者组消费完会返回一个成功的响应,然后队列再把维护的消费位移加一,这样就不会出现刚刚消费过的消息再一次被消费了。

可能你还有一个问题,为什么一个主题中需要维护多个队列?答案是提高并发能力。的确,每个主题中只存在一个队列也是可行的。你想一下,如果每个主题中只存在一个队列,这个队列中也维护着每个消费者组的消费位置,这样也可以做到发布订阅模式。如下图:

但是,这样我生产者是不是只能向一个队列发送消息?又因为需要维护消费位置所以一个队列只能对应一个消费者组中的消费者,这样是不是其他的 Consumer 就没有用武之地了?从这两个角度来讲,并发度一下子就小了很多。

所以总结来说,RocketMQ 通过使用在一个 Topic 中配置多个队列,并且每个队列维护每个消费者组的消费位置,实现了主题模式/发布订阅模式。

系统架构

讲完了消息模型,我们理解起 RocketMQ 的技术架构起来就容易多了。RocketMQ 技术架构中有四大角色 NameServer、Broker、Producer、Consumer。这4大角色,已经在基本概念中简单解释过,对于相关词汇,这里再重点解释一下。

  • Broker:主要负责消息的存储、投递和查询以及服务高可用保证。说白了就是消息队列服务器嘛,生产者生产消息到 Broker,消费者从 Broker 拉取消息并消费。这里,我还得普及一下关于 Broker、Topic 和队列的关系。上面我讲解了 Topic 和队列的关系——一个 Topic 中存在多个队列,那么这个 Topic 和队列存放在哪呢?一个 Topic 分布在多个 Broker 上,一个 Broker 可以配置多个 Topic,它们是多对多的关系。如果某个 Topic 消息量很大,应该给它多配置几个队列,并且尽量多分布在不同 Broker 上,以减轻某个 Broker 的压力。Topic 消息量都比较均匀的情况下,如果某个 broker 上的队列越多,则该 broker 压力越大。
  • NameServer:不知道你们有没有接触过 ZooKeeper 和 Spring Cloud 中的 Eureka,它其实也是一个注册中心,主要提供两个功能:Broker 管理和路由信息管理。说白了就是 Broker 会将自己的信息注册到 NameServer 中,此时 NameServer 就存放了很多 Broker 的信息(Broker的路由表),消费者和生产者就从 NameServer 中获取路由表然后照着路由表的信息和对应的 Broker 进行通信(生产者和消费者定期会向 NameServer 去查询相关的 Broker 的信息)。
  • Producer:消息发布的角色,支持分布式集群方式部署。
  • Consumer:消息消费的角色,支持分布式集群方式部署。支持以 push 推,pull 拉两种模式对消息进行消费,同时也支持集群方式和广播方式的消费,它提供实时消息订阅机制。

听完了上面的解释你可能会觉得,这玩意好简单。不就是这样的么?

嗯?你可能会发现一个问题,这老家伙 NameServer 干啥用的,这不多余吗?直接 Producer、Consumer 和 Broker 直接进行生产消息,消费消息不就好了么?但是,我们上文提到过 Broker 是需要保证高可用的,如果整个系统仅仅靠着一个 Broker 来维持的话,那么这个 Broker 的压力会不会很大?所以我们需要使用多个 Broker 来保证负载均衡。如果说,我们的消费者和生产者直接和多个 Broker 相连,那么当 Broker 修改的时候必定会牵连着每个生产者和消费者,这样就会产生耦合问题,而 NameServer 注册中心就是用来解决这个问题的。

当然,RocketMQ 中的技术架构肯定不止前面那么简单,因为上面图中的四个角色都是需要做集群的。我给出一张官网的架构图,大家尝试理解一下。

其实和我们最开始画的那张乞丐版的架构图也没什么区别,主要是一些细节上的差别,听我细细道来。

  • 第一、我们的 Broker 做了集群并且还进行了主从部署,由于消息分布在各个 Broker 上,一旦某个 Broker 宕机,则该 Broker 上的消息读写都会受到影响。所以 RocketMQ 提供了 master/slave 的结构,salve 定时从 master 同步数据(同步刷盘或者异步刷盘),如果 master 宕机,则 slave 提供消费服务,但是不能写入消息(后面我还会提到)。
  • 第二、为了保证 HA,我们的 NameServer 也做了集群部署,但是请注意它是去中心化的。也就意味着它没有主节点,你可以很明显地看出 NameServer 的所有节点是没有进行 Info Replicate 的,在 RocketMQ 中是通过单个 Broker 和所有 NameServer 保持长连接,并且在每隔 30 秒 Broker 会向所有 Nameserver 发送心跳,心跳包含了自身的 Topic 配置信息,这个步骤就对应这上面的 Routing Info。
  • 第三、在生产者需要向 Broker 发送消息的时候,需要先从 NameServer 获取关于 Broker 的路由信息,然后通过轮询的方法去向每个队列中生产数据以达到负载均衡的效果。
  • 第四、消费者通过 NameServer 获取所有 Broker 的路由信息后,向 Broker 发送 Pull 请求来获取消息数据。Consumer 可以以两种模式启动—— 广播(Broadcast)和集群(Cluster)。广播模式下,一条消息会发送给同一个消费组中的所有消费者,集群模式下消息只会发送给一个消费者。

高级特性&常见问题

顺序消费

在上面的技术架构介绍中,我们已经知道了 RocketMQ 在主题上是无序的、它只有在队列层面才是保证有序的。这又扯到两个概念——普通顺序和严格顺序。所谓普通顺序是指消费者通过同一个消费队列收到的消息是有顺序的,不同消息队列收到的消息则可能是无顺序的。普通顺序消息在 Broker 重启情况下不会保证消息顺序性(短暂时间)。

所谓严格顺序是指消费者收到的所有消息均是有顺序的。严格顺序消息即使在异常情况下也会保证消息的顺序性。但是,严格顺序看起来虽好,实现它可会付出巨大的代价。如果你使用严格顺序模式,Broker 集群中只要有一台机器不可用,则整个集群都不可用。你还用啥?现在主要场景也就在 binlog 同步。一般而言,我们的 MQ 都是能容忍短暂的乱序,所以推荐使用普通顺序模式。(这个严格顺序,感觉没太懂,后面再查一下相关资料。。。)

那么,我们现在使用了普通顺序模式,我们从上面学习知道了在 Producer 生产消息的时候会进行轮询(取决你的负载均衡策略)来向同一主题的不同消息队列发送消息。那么如果此时我有几个消息分别是同一个订单的创建、支付、发货,在轮询的策略下这三个消息会被发送到不同队列,因为在不同的队列此时就无法使用 RocketMQ 带来的队列有序特性来保证消息有序性了。

那么,怎么解决呢?其实很简单,我们需要处理的仅仅是将同一语义下的消息放入同一个队列(比如这里是同一个订单),那我们就可以使用 Hash 取模法来保证同一个订单在同一个队列中就行了。

重复消费

就两个字——幂等。在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。比如说,这个时候我们有一个订单的处理积分的系统,每当来一个消息的时候它就负责为创建这个订单的用户的积分加上相应的数值。可是有一次,消息队列发送给订单系统 FrancisQ 的订单信息,其要求是给 FrancisQ 的积分加上 500。但是积分系统在收到 FrancisQ 的订单信息处理完成之后返回给消息队列处理成功的信息的时候出现了网络波动(当然还有很多种情况,比如 Broker 意外重启等等),这条回应没有发送成功。

那么,消息队列没收到积分系统的回应会不会尝试重发这个消息?问题就来了,我再发这个消息,万一它又给 FrancisQ 的账户加上 500 积分怎么办呢?所以我们需要给我们的消费者实现幂等,也就是对同一个消息的处理结果,执行多少次都不变。

那么如何给业务实现幂等呢?这个还是需要结合具体的业务的。你可以使用写入 Redis 来保证,因为 Redis 的 key 和 value 就是天然支持幂等的。当然还有使用数据库插入法,基于数据库的唯一键来保证重复数据不会被插入多条。不过最主要的还是需要根据特定场景使用特定的解决方案,你要知道你的消息消费是否是完全不可重复消费还是可以忍受重复消费的,然后再选择强校验和弱校验的方式。毕竟在 CS 领域还是很少有技术银弹的说法。

简单了来说,幂等的校验,还是需要业务方来支持,因为你解决不了网络抖动问题哈~~

分布式事务

如何解释分布式事务呢?事务大家都知道吧?要么都执行要么都不执行。在同一个系统中我们可以轻松地实现事务,但是在分布式架构中,我们有很多服务是部署在不同系统之间的,而不同服务之间又需要进行调用。比如此时我下订单然后增加积分,如果保证不了分布式事务的话,就会出现A系统下了订单,但是B系统增加积分失败或者A系统没有下订单,B系统却增加了积分。前者对用户不友好,后者对运营商不利,这是我们都不愿意见到的。那么,如何去解决这个问题呢?

如今比较常见的分布式事务实现有 2PC、TCC 和事务消息(half 半消息机制)。每一种实现都有其特定的使用场景,但是也有各自的问题,都不是完美的解决方案。在 RocketMQ 中使用的是事务消息加上事务反查机制来解决分布式事务问题的。

下面是上图的执行流程:

  1. A服务先发送个Half Message给Brock端,消息中携带 B服务 即将要+100元的信息。
  2. 当A服务知道Half Message发送成功后,那么开始第3步执行本地事务。
  3. 执行本地事务(会有三种情况1、执行成功。2、执行失败。3、网络等原因导致没有响应)
  4. 如果本地事务成功,那么Product像Brock服务器发送Commit,这样B服务就可以消费该message。
  5. 如果本地事务失败,那么Product像Brock服务器发送Rollback,那么就会直接删除上面这条半消息。
  6. 如果因为网络等原因迟迟没有返回失败还是成功,那么会执行RocketMQ的回调接口,来进行事务的回查。

消息堆积

消息中间件的主要功能是异步解耦,还有个重要功能是挡住前端的数据洪峰,保证后端系统的稳定性,这就要求消息中间件具有一定的消息堆积能力,消息堆积分以下两种情况:

  • 消息堆积在内存Buffer,一旦超过内存Buffer,可以根据一定的丢弃策略来丢弃消息,如CORBA Notification规范中描述。适合能容忍丢弃消息的业务,这种情况消息的堆积能力主要在于内存Buffer大小,而且消息堆积后,性能下降不会太大,因为内存中数据多少对于对外提供的访问能力影响有限。
  • 消息堆积到持久化存储系统中,例如DB,KV存储,文件记录形式。当消息不能在内存Cache命中时,要不可避免的访问磁盘,会产生大量读IO,读IO的吞吐量直接决定了消息堆积后的访问能力。

评估消息堆积能力主要有以下四点:

  • 消息能堆积多少条,多少字节?即消息的堆积容量。
  • 消息堆积后,发消息的吞吐量大小,是否会受堆积影响?
  • 消息堆积后,正常消费的Consumer是否会受影响?
  • 消息堆积后,访问堆积在磁盘的消息时,吞吐量有多大?

简单来说,RocketMQ支持大量消息堆积,消息会存在内存,超出内存的消息会持久化到磁盘中。

定时消息

定时消息是指消息发到Broker后,不能立刻被Consumer消费,要到特定的时间点或者等待特定的时间后才能被消费。如果要支持任意的时间精度,在Broker层面,必须要做消息排序,如果再涉及到持久化,那么消息排序要不可避免的产生巨大性能开销。RocketMQ支持定时消息,但是不支持任意时间精度,支持特定的level,例如定时5s,10s,1m等。

简单来说,RocketMQ支持定时消息,但是只支持固定时间,不支持任意精度时间。

回溯消费

同步刷盘和异步刷盘

上面我讲了那么多的 RocketMQ 的架构和设计原理,你有没有好奇,在 Topic 中的队列是以什么样的形式存在的?队列中的消息又是如何进行存储持久化的呢?我在上文中提到的同步刷盘和异步刷盘又是什么呢?它们会给持久化带来什么样的影响呢?下面我将给你们一一解释。

如上图所示,在同步刷盘中需要等待一个刷盘成功的 ACK,同步刷盘对 MQ 消息可靠性来说是一种不错的保障,但是性能上会有较大影响,一般地适用于金融等特定业务场景。而异步刷盘往往是开启一个线程去异步地执行刷盘操作。消息刷盘采用后台异步线程提交的方式进行,降低了读写延迟,提高了 MQ 的性能和吞吐量,一般适用于如发验证码等对于消息保证要求不太高的业务场景。一般地,异步刷盘只有在 Broker 意外宕机的时候会丢失部分数据,你可以设置 Broker 的参数 FlushDiskType 来调整你的刷盘策略(ASYNC_FLUSH 或者 SYNC_FLUSH)。

简单来说,同步刷盘是刷盘后请求再返回,异步刷盘是直接返回请求,再去慢慢刷盘,可能会导致数据丢失。

同步复制和异步复制

上面的同步刷盘和异步刷盘是在单个结点层面的,而同步复制和异步复制主要是指的 Borker 主从模式下,主节点返回消息给客户端的时候是否需要同步从节点。

  • 同步复制:也叫 “同步双写”,也就是说,只有消息同步双写到主从结点上时才返回写入成功。
  • 异步复制:消息写入主节点之后就直接返回写入成功。异步复制会不会也像异步刷盘那样影响消息的可靠性呢?答案是不会的,因为两者就是不同的概念,对于消息可靠性是通过不同的刷盘策略保证的,而像异步同步复制策略仅仅是影响到了可用性。为什么呢?其主要原因是 RocketMQ 是不支持自动主从切换的,当主节点挂掉之后,生产者就不能再给这个主节点生产消息了。比如这个时候采用异步复制的方式,在主节点还未发送完需要同步的消息的时候主节点挂掉了,这个时候从节点就少了一部分消息。但是此时生产者无法再给主节点生产消息了,消费者可以自动切换到从节点进行消费(仅仅是消费),所以在主节点挂掉的时间只会产生主从结点短暂的消息不一致的情况,降低了可用性,而当主节点重启之后,从节点那部分未来得及复制的消息还会继续复制。

扩展知识1:在单主从架构中,如果一个主节点挂掉了,那么也就意味着整个系统不能再生产了。那么这个可用性的问题能否解决呢?一个主从不行那就多个主从的呗,别忘了在我们最初的架构图中,每个 Topic 是分布在不同 Broker 中的。但是这种复制方式同样也会带来一个问题,那就是无法保证严格顺序。在上文中我们提到了如何保证的消息顺序性是通过将一个语义的消息发送在同一个队列中,使用 Topic 下的队列来保证顺序性的。如果此时我们主节点 A 负责的是订单 A 的一系列语义消息,然后它挂了,这样其他节点是无法代替主节点A的,如果我们任意节点都可以存入任何消息,那就没有顺序性可言了。(这点我并不认同,我理解主从的对列信息应该是一样的,我从主节点读到哪里,如果主节点挂掉,应该是可以到从结点去读取的,如果不能这样,搞个主从就完全没有意义了。因为主从的信息是一样的,对队列的顺序是内有影响的,我不可能把不同的信息,搞两个队列,分别放到主从机器。)

扩展知识2:在 RocketMQ 中采用了 Dledger 解决主从数据同步问题。他要求在写入消息的时候,要求至少消息复制到半数以上的节点之后,才给客⼾端返回写⼊成功,并且它是⽀持通过选举来动态切换主节点的。这里我就不展开说明了,读者可以自己去了解。也不是说 Dledger 是个完美的方案,至少在 Dledger 选举过程中是无法提供服务的,而且他必须要使用三个节点或以上,如果多数节点同时挂掉他也是无法保证可用性的,而且要求消息复制板书以上节点的效率和直接异步复制还是有一定的差距的。

这个机制,感觉就像大众化的版本,基本思路都一样,为了保证数据可用性,我还是推荐同步复制,当大多数节点复制成功,就认为复制完毕,和ETCD的Raft协议的日志同步原理一样。

容错机制

在实际使用RocketMQ的时候我们并不能保证每次发送的消息都刚好能被消费者一次性正常消费成功,可能会存在需要多次消费才能成功或者一直消费失败的情况,那作为发送者该做如何处理呢?

RocketMQ提供了ack机制,以保证消息能够被正常消费。发送者为了保证消息肯定消费成功,只有使用方明确表示消费成功,RocketMQ才会认为消息消费成功。中途断电,抛出异常等都不会认为成功——即都会重新投递。当然,如果消费者不告知发送者我这边消费信息异常,那么发送者是不会知道的,所以消费者在设置监听的时候需要给个回调。

为了保证消息是肯定被至少消费成功一次,RocketMQ会把这批消息重发回Broker(topic不是原topic而是这个消费租的RETRY topic),在延迟的某个时间点(默认是10秒,业务可设置)后,再次投递到这个ConsumerGroup。而如果一直这样重复消费都持续失败到一定次数(默认16次),就会投递到DLQ死信队列。应用可以监控死信队列来做人工干预。

简单来说,通过ACK保证消息一定能正常消费,对于异常消息,会重新放回Broker,但是这样就会打乱消息的顺序,所以容错机制和消息严格顺序,鱼和熊掌不可兼得。

特性分析

这里才是内容的重点,不仅需要知道RocketMQ的特性,还需要知道支持这些特性的原因:

  • 消息路由(不支持):RocketMQ在处理消息之前是不允许消费者过滤一个主题中的消息。一个订阅的消费者在没有异常情况下会接受一个队列中的所有消息;
  • 消息有序(部分支持):需要将同一类的消息hash到同一个队列Queue中,才能支持消息的顺序,如果同一类消息散落到不同的Queue中,就不能支持消息的顺序,如果设定消息一定要正常消费,那么就不能保证消息顺序。
  • 消息时序(可以支持):可以发送定时消息,但是只能制定系统定义好的时间,不支持自定义时间;
  • 容错处理(支持):通过ACK机制,保证消息一定能正常消费,这个和RabbitMQ很像;
  • 伸缩(支持):整体架构其实和kafaka很像,可以扩容broker和内部队列数,或者增加消费组中的消费组数量,提高消费能力。
  • 持久化(支持):消息可以持久化到磁盘中,所以支持消息的回溯,和kafaka很像。
  • 消息回溯(支持):因为消息支持持久化,就支持回溯,可以理解是附带的功能。
  • 高吞吐(非常好):借鉴kafaka的设计,不会出现rabbitMQ的单Master抗压力问题,可以从多个borker写入和消费消息。

RabbitMQ

我们也不能天天去背八股,还需要实践,RabbitMQ的实操实例,直接看这篇[《入门RabbitMQ,这一篇绝对够!》]

本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/Gb9k_LxQhOPDcMGxDJ9Jvw

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237269次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8108次阅读
 目录