上一篇文章,介绍了TaskControl(简称TC)的初始化逻辑、worker的基本概念,并引出了TaskGroup(简称TG)的主要函数:run_main_task()。在谈run_main_task()之前,我们先看一下TG的几个主要成员。
讲到TG先看TG的主要成员:
size_t _steal_seed;
size_t _steal_offset;
ContextualStack* _main_stack;
bthread_t _main_tid;
WorkStealingQueue<bthread_t> _rq;
RemoteTaskQueue _remote_rq;
每个TG都维护自己一个单独的栈指针:_main_stack和_main_tid。也就是是说TG中有一个特殊的TM。我姑且称之为“主TM”。这两个是在TG初始化的时候赋值的。
每个TG有两个TM的队列:rq和remote_rq,它们之间有啥区别呢?
通过在代码里搜索这两个队列入队的逻辑,可以发现。当调用bthread_start_background()创建bthread任务时,其内部会继续调用TG的ready_to_run(),接着push_rq()函数,给TG的rq入队。而remote_rq队列的入队是是通过执行TG的ready_to_run_remote()完成的。
再看一下ready_to_run_remote注释:
// Push a bthread into the runqueue from another non-worker thread.
void ready_to_run_remote(bthread_t tid, bool nosignal = false);
在没有woker(TG)的线程中把bthread入队,只能入到有worder线程中的TG的remote_rq队列。
再看下ready_to_run_remote()的调用的地方。
在butex_wake()中:
TaskGroup* g = tls_task_group;
if (g) {
TaskGroup::exchange(&g, bbw->tid);
} else {
bbw->control->choose_one_group()->ready_to_run_remote(bbw->tid);
}
在start_background()中:
template <bool REMOTE>
int TaskGroup::start_background(bthread_t* __restrict th,
const bthread_attr_t* __restrict attr,
void * (*fn)(void*),
void* __restrict arg) {
...
...
if (REMOTE) {
ready_to_run_remote(m->tid, (using_attr.flags & BTHREAD_NOSIGNAL));
} else {
ready_to_run(m->tid, (using_attr.flags & BTHREAD_NOSIGNAL));
}
return 0;
}
start_background<>()
模板参数为true的时候被调用ready_to_run_remote()
。而在start_from_non_worker()
中,会调用start_background<true>()
!
好了,言归正传。
run_main_task(),去掉一些bvar相关的代码,这个函数也异常简洁。
void TaskGroup::run_main_task() {
...
TaskGroup* dummy = this;
bthread_t tid;
while (wait_task(&tid)) {
TaskGroup::sched_to(&dummy, tid);
DCHECK_EQ(this, dummy);
DCHECK_EQ(_cur_meta->stack, _main_stack);
if (_cur_meta->tid != _main_tid) {
TaskGroup::task_runner(1/*skip remained*/);
}
...
}
// Don't forget to add elapse of last wait_task.
current_task()->stat.cputime_ns += butil::cpuwide_time_ns() - _last_run_ns;
}
死循环执行wait_task来等待有效的任务,如果能等到任务,wait_task()的出参tid(bthread_t类型)会记录这个任务的ID号。好了,拿到任务ID号tid后,执行sched_to函数来切换栈。在进行了一些check工作后,判断如果当前的tid不是TG的主要tid(main_tid)则执行:TaskGroup::task_runner(1);
由此观之,我们发现三个关键函数:wait_task()
、sched_to()
、 task_runner()
简述一下他们的基本功能:
现在我们的观察视角终于可以切入到“work stealing”了。
首先声明,work stealing不是协程的专利,更不是Go语言的专利。work stealing是一种通用的实现负载均衡的算法。这里的负载均衡说的不是像Nginx那种对于外部网络请求做负载均衡,此处指的是每个CPU处理任务时,每个核的负载均衡。不止协程,其实线程池也可以做work stealing。
20世纪90年代,MIT的Charles E. Leiserson 教授发起并指导了CILK项目。该项目发表了许多论文,启发了各种使用“工作窃取”的基于任务的调度器。
看源码,这里简化起见,去掉了BTHREAD_DONT_SAVE_PARKING_STATE条件宏判断逻辑相关
bool TaskGroup::wait_task(bthread_t* tid) {
do {
if (_last_pl_state.stopped()) {
return false;
}
_pl->wait(_last_pl_state);
if (steal_task(tid)) {
return true;
}
} while (true);
}
_pl是ParkingLot*类型,_last_plstate是pl中的state。关于它俩的更多介绍,后面会有其他文章。
_pl->wait(_last_pl_state)内部调用的futex做的wait操作,这里可以简单理解为阻塞等待被通知来终止阻塞,当阻塞结束之后,执行steal_task()来进行工作窃取。如果窃取成功则返回。
TaskGoup::steal_task()
bool steal_task(bthread_t* tid) {
if (_remote_rq.pop(tid)) {
return true;
}
_last_pl_state = _pl->get_state();
return _control->steal_task(tid, &_steal_seed, _steal_offset);
}
首先TG的remote_rq队列中的任务出队,如果没有则同全局TC来窃取任务。
视角从TG跳出,来看一看TC的steal_task()
bool TaskControl::steal_task(bthread_t* tid, size_t* seed, size_t offset) {
// 1: Acquiring fence is paired with releasing fence in _add_group to
// avoid accessing uninitialized slot of _groups.
const size_t ngroup = _ngroup.load(butil::memory_order_acquire/*1*/);
if (0 == ngroup) {
return false;
}
// NOTE: Don't return inside `for' iteration since we need to update |seed|
bool stolen = false;
size_t s = *seed;
for (size_t i = 0; i < ngroup; ++i, s += offset) {
TaskGroup* g = _groups[s % ngroup];
// g is possibly NULL because of concurrent _destroy_group
if (g) {
if (g->_rq.steal(tid)) {
stolen = true;
break;
}
if (g->_remote_rq.pop(tid)) {
stolen = true;
break;
}
}
}
*seed = s;
return stolen;
}
可以看出是随机找一个TG,先从它的rq队列窃取任务,如果失败再从它的remote_rq队列窃取任务。在消费的时候rq比remote_rq有更高的优先级,显而易见,我们一定是想先执行有woker的线程自己push到队列中的bthread,然后再消费其他线程push给自己的bthread。
通过上面三个函数可以看出TaskGroup::wait_task() 在等待任务的时候,是优先获取当前TG的remote_rq,然后是依次窃取其他TG的rq、remote_rq。它并没有从当前TG的rq找任务!这是为什么呢?原因是避免race condition。也就是避免多个TG 等待任务的时候,当前TG从rq取任务,与其他TG过来自己这边窃取任务造成竞态。从而提升一点点的性能。
那么当前TG的rq是什么时候被消费的呢?
在TG的ending_sched()函数中有rq的出队操作,而ending_sched()在task_runner中被调用,task_runner也是run_main_task()的三个关键函数之一。
void TaskGroup::task_runner(intptr_t skip_remained) {
TaskGroup* g = tls_task_group;
if (!skip_remained) {
while (g->_last_context_remained) {
RemainedFn fn = g->_last_context_remained;
g->_last_context_remained = NULL;
fn(g->_last_context_remained_arg);
g = tls_task_group;
}
...
}
在run_main_task()中task_runner()的输入参数是1,所以上面的if逻辑会被跳过。这里忽略这个if,继续向下看,下面是一个很长的do-while循环(去掉一些日志和bvar相关逻辑,补充注释):
do {
// Meta and identifier of the task is persistent in this run.
TaskMeta* const m = g->_cur_meta;
...
// 执行TM(bthread)中的回调函数
void* thread_return;
try {
thread_return = m->fn(m->arg);
} catch (ExitException& e) {
thread_return = e.value();
}
// Group is probably changed
g = tls_task_group;
// TODO: Save thread_return
(void)thread_return;
... 日志
// 清理 线程局部变量(下面是原注释)
// Clean tls variables, must be done before changing version_butex
// otherwise another thread just joined this thread may not see side
// effects of destructing tls variables.
KeyTable* kt = tls_bls.keytable;
if (kt != NULL) {
return_keytable(m->attr.keytable_pool, kt);
// After deletion: tls may be set during deletion.
tls_bls.keytable = NULL;
m->local_storage.keytable = NULL; // optional
}
// 累加版本号,且版本号不能为0(下面是原注释)
// Increase the version and wake up all joiners, if resulting version
// is 0, change it to 1 to make bthread_t never be 0. Any access
// or join to the bthread after changing version will be rejected.
// The spinlock is for visibility of TaskGroup::get_attr.
{
BAIDU_SCOPED_LOCK(m->version_lock);
if (0 == ++*m->version_butex) {
++*m->version_butex;
}
}
// 唤醒joiner
butex_wake_except(m->version_butex, 0);
// _nbthreads减1(注意_nbthreads不是整型)
g->_control->_nbthreads << -1;
g->set_remained(TaskGroup::_release_last_context, m);
// 查找下一个任务,并切换到其对应的运行时上下文
ending_sched(&g);
} while (g->_cur_meta->tid != g->_main_tid);
do while循环中会执行回调函数,结束的时候会查找下一个任务,并切换上下文。循环的终止条件是tls_task_group的_cur_meta不等于其_main_tid。
在ending_sched()中,会有依次从TG的rq、remote_rq取任务,找不到再窃取其他TG的任务,如果都找不到任务,则设置_cur_meta为_main_tid,也就是让task_runner()的循环终止。
然后就会回到run_main_task()的主循环,继续wait_task()等待新任务了。
好了,run_main_task()的三大关键函数,已过其二,还剩下一个sched_to()还未揭开其庐山真面,下一篇文章,我来带大家解读sched_to()。之所以把它单独成篇,是因为会涉及一些汇编的知识,读起来可能晦涩艰深。大家做好准备!
本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/mN9DM65B4FJW3e7-c9O3NA
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。