bthread源码剖析(四): 通过ParkingLot实现Worker间任务状态同步

发表于 2年以前  | 总阅读数:387 次

通过之前的文章我们知道TaskGroup(以下简称TG)是在死循环等待任务,然后切换栈去执行任务。在当前TG没有任务的时候会进行“工作窃取”窃取其他TG的任务。在没有任务的时候TG会“休眠”,当任务出现的时候被唤醒然后消费。

这个思路和线程中的条件变量类似。条件变量是线程间同步的一种方式。而bthread实现worker间的状态同步是通过“ParkingLot”。并且实现了也有与条件变量类似的wait(阻塞并等待)和signal(通知并唤醒)的操作。

ParkingLot与TaskControl

ParkingLot(以下简称PL)直译是停车场,你可以理解成停放worker的停车场。我们暂时先不展开PL的定义。而是看一下ParkingLot与TaskControl(以下简称TC)与TaskGroup的关系。

TC中有ParkingLot类型的成员,是一个数组:


    static const int PARKING_LOT_NUM = 4;
    ParkingLot _pl[PARKING_LOT_NUM];

也就是说一个TC有4个PL对象。因为全局只有一个TC,所以也就是全局只有4个PL。

TG中也有PL相关的成员(BTHREAD_DONT_SAVE_PARKING_STATE是开启的):

    ParkingLot* _pl;
#ifndef BTHREAD_DONT_SAVE_PARKING_STATE
    ParkingLot::State _last_pl_state;
#endif

_pl和_last_pl_state。_pl只是一个指针,其实他也源自TC中的pl。看TG的构造函数。

TaskGroup::TaskGroup(TaskControl* c)
... // 初始化列表,给成员赋值默认值,这里忽略
{
    _steal_seed = butil::fast_rand();
    _steal_offset = OFFSET_TABLE[_steal_seed % ARRAY_SIZE(OFFSET_TABLE)];
    _pl = &c->_pl[butil::fmix64(pthread_numeric_id()) % TaskControl::PARKING_LOT_NUM];
}

butil::fmix64()是一个hash函数,用的murmurhash的算法,将输入的整型映射成另外一个整型。这里用pthread线程的id作为参赛,进行hash,然后把结果再对PARKING_LOT_NUM取模。相当于是从TC的4个PL中选择了一个PL,赋值给了TG!

换言之,TC下面的所有TG(worker)被分成了4组,每组共享一个PL。通过PL在调控TG之间bthread任务的生产与消费。之所以用4个PL,而不是一个PL,大概率也是为了减少race condition(竞争状态)减少性能开销。

从生产者的角度出发

我们常用的bthread_start_background()会调用TG的start_background()。

TaskGroup::start_background()中的定义中有:

    if (REMOTE) {
        ready_to_run_remote(m->tid, (using_attr.flags & BTHREAD_NOSIGNAL));
    } else {
        ready_to_run(m->tid, (using_attr.flags & BTHREAD_NOSIGNAL));
    }

ready_to_run_remote()和ready_to_run()的第二个参数nosignal,需要创建bthread任务的时候,给bthread设置属性:BTHREAD_NOSIGNAL。比如:

// 样例
bthread_t th;
bthread_attr_t tmp = BTHREAD_ATTR_NORMAL | BTHREAD_NOSIGNAL;
bthread_start_background(&th, &tmp, ProcessInputMessage, call_back_func);

不过通常我们调用bthread_start_background()的时候,第二个参数是设置为NULL的。所以可以暂时忽略nosignal相关逻辑。默认都是走signal的。注意这里的说的signal不是Unix C环境编程里面的信号。而是brpc自己给bthread实现的一套调控TG(worker)等待与唤醒的信号。

回看ready_to_run_remote()和ready_to_run()。ready_to_run()就是把任务入队到TG的 rq,ready_to_run_remote()是在当前线程不是brpc的worker()的时候(在worker外创建的 bthread任务),把任务通过TC入队到某个TG的 remote_rq。

ready_to_run()源码定义如下:

void TaskGroup::ready_to_run(bthread_t tid, bool nosignal) {
    push_rq(tid);
    if (nosignal) {
        ++_num_nosignal;
    } else {
        const int additional_signal = _num_nosignal;
        _num_nosignal = 0;
        _nsignaled += 1 + additional_signal;
        _control->signal_task(1 + additional_signal);
    }
}

ready_to_run()比较简洁,我们继续看下ready_to_run_remote()的定义:

void TaskGroup::ready_to_run_remote(bthread_t tid, bool nosignal) {
    _remote_rq._mutex.lock();
    while (!_remote_rq.push_locked(tid)) {
        flush_nosignal_tasks_remote_locked(_remote_rq._mutex);
        LOG_EVERY_SECOND(ERROR) << "_remote_rq is full, capacity="
                                << _remote_rq.capacity();
        ::usleep(1000);
        _remote_rq._mutex.lock();
    }
    if (nosignal) {
        ++_remote_num_nosignal;
        _remote_rq._mutex.unlock();
    } else {
        const int additional_signal = _remote_num_nosignal;
        _remote_num_nosignal = 0;
        _remote_nsignaled += 1 + additional_signal;
        _remote_rq._mutex.unlock();
        _control->signal_task(1 + additional_signal);
    }
}

先给当前TG的 remote_rq 加互斥锁。然后对 remote_rq 进行入队操作,这里是一个while循环,只有入队失败就执行flush_nosignal_tasks_remote_locked()然后休眠1ms,然后重新尝试入队。

这里入队失败的唯一原因就是remote_rq 的容量满了。flush_nosignal_tasks_remote_locked()的操作也无非就是发出一个信号,让remote_rq中的任务(TM/bthread)尽快被消费掉。给新的任务入队留出空间。另外flush_nosignal_tasks_remote_locked()内会做解锁操作,所以休眠1ms之后需要重新加锁。

回看ready_to_run_remote(),在while结束之后。表示新任务已经入队。前面已讲,nosignal多为false,所以忽略if(nosignal)的部分,关注else的部分。用当前remote_rq中还没有通知的任务个数+1,去做通知操作。也就是调用TaskControl的signal_task()。其实就是通知其他人来消费。

    // Tell other groups that `n' tasks was just added to caller's runqueue
    void signal_task(int num_task);

TaskControl::signal_task(int num_task)

看代码:

   if (num_task <= 0) {
        return;
    }
    // TODO(gejun): Current algorithm does not guarantee enough threads will
    // be created to match caller's requests. But in another side, there's also
    // many useless signalings according to current impl. Capping the concurrency
    // is a good balance between performance and timeliness of scheduling.
    if (num_task > 2) {
        num_task = 2;
    }

num_task 小于等于0 则返回,如果大于2,则重置为2。也就是说下面逻辑中num_task的有效值只有1和2。在上方“戈君”(BRPC作者)的注释中提到,把num_task不超过2,是在性能和调度时间直接的一种平衡。

这句话如何理解呢?其实是这样,如果TC的signal_task()通知的任务个数多,那么队列被消费的也就越快。消费的快本来是好事,但是也有个问题就是我们现在之所以走到signal_task()是因为我们在“生产”bthread任务,也就是说在执行bthread_start_background()(或其他函数)创建新任务。这个函数调用是阻塞的,如果signal_task()通知的任务个数太多,则会导致bthread_start_background()阻塞的时间拉长。所以这里说是找到一种平衡。

int start_index = butil::fmix64(pthread_numeric_id()) % PARKING_LOT_NUM;
num_task -= _pl[start_index].signal(1);

start_index计算方式和刚才给TG分配PL的相同,主要就是找到了当前TG(worker)所归属的PL。然后调用这个PL的成员函数signal(1)进行通知。好了,先暂停“生产者”函数调用视角。看下PL的定义,以及其signal()函数。

ParkingLot 的基础定义

class BAIDU_CACHELINE_ALIGNMENT ParkingLot {
public:
    class State {
    public:
        State(): val(0) {}
        bool stopped() const { return val & 1; }
    private:
    friend class ParkingLot;
        State(int val) : val(val) {}
        int val;
    };

    ParkingLot() : _pending_signal(0) {}

    ... 成员函数:signal(int)、get_state()、wait()、stop()

private:
    // higher 31 bits for signalling, LSB for stopping.
    butil::atomic<int> _pending_signal;
};

有一个内部类State,其构造函数可以接收一个int。PL是它的友元,另外PL有一个私有成员_pending_signal,是一个原子类型。初始为0。

接着我们看下PL的成员函数signal(int),也就是前面调用的那个。

    // Wake up at most `num_task' workers.
    // Returns #workers woken up.
    int signal(int num_task) {
        _pending_signal.fetch_add((num_task << 1), butil::memory_order_release);
        return futex_wake_private(&_pending_signal, num_task);
    }

注释有言:唤醒最多num_task个worker,返回唤醒的worker。

代码实现中,寥寥两行。先给_pending_signal 加上num_task <<1(即num_task*2)。这里之所以累加的数字,要经过左移操作,其目的只是为了让其成为偶数。为什么这里需要一个偶数呢?在文章尾部会有讲解,大家稍安勿躁。

接着调用futex_wake_private(&_pending_signal, num_task)。那么问题又来了,futex_wake_private又是何方神圣呢?

futex_wake_private()

在src/bthread/sys_futex.h中有定义。另外该文件中还有阈值配套的函数futex_wait_private()

inline int futex_wake_private(void* addr1, int nwake) {
    return syscall(SYS_futex, addr1, (FUTEX_WAKE | FUTEX_PRIVATE_FLAG),
                   nwake, NULL, NULL, 0);
}

其实就是对于系统调用SYS_futex的封装。这里之所以通过syscall()传参,而不是直接调用的方式,来调用它。是因为SYS_futex没有被glibc export成库函数。我们通常使用的fork()、open()、write()等函数虽然也被称为系统调用,但其实是glibc把系统调用给export出来的封装函数。

继续介绍一下SYS_futex调用。就是通常说的futex,它是一种用户态和内核态混合的同步机制,可以简单理解为是一种效率较高的同步机制。pthread的很多API大多基于futex实现,细节不再展开。futex系统调用的API声明如下:


       int futex(int *uaddr, int op, int val, const struct timespec *timeout,
                 int *uaddr2, int val3);

参数解析:

  1. uaddr指针指向一个整型,存储一个整数。
  2. op表示要执行的操作类型,比如唤醒(FUTEX_WAKE)、等待(FUTEX_WAIT)
  3. val表示一个值,注意:对于不同的op类型,val语义不同
  4. 对于等待操作:如果uaddr存储的整型与val相同则继续休眠等待。等待时间就是timeout参数。
  5. 对于唤醒操作:val表示,最多唤醒val 个阻塞等待uaddr上的“消费者”(之前对同一个uaddr调用过FUTEX_WAIT,姑且称之为消费者,其实在brpc语境中,就是阻塞的worker)。
  6. timeout表示超时时间,仅对op类型为等待时有用。就是休眠等待的最长时间。在
  7. uaddr2和val3可以忽略。

返回值解析:

  1. 对于等待操作:成功返回0,失败返回-1
  2. 对于唤醒操作:成功返回唤醒的之前阻塞在futex上的“消费者”个数。失败返回-1。

所以futex_wake_private()里面的syscall()等价于:

futex(&_pending_signal, (FUTEX_WAKE|FUTEX_PRIVATE_FLAG), num_task, NULL, NULL, 0);

FUTEX_WAKE是唤醒操作,FUTEX_PRIVATE_FLAG是一个标记,表示不和其他进程共享,可以减少开销。由于是唤醒操作,在brpc语境下,其返回值就是阻塞的worker个数。它的返回值会一路透传给futex_wake_private()以及PL的signal()函数。

彼时我们的观察视角也可以开始回溯,回到TC的signal_task()了。

继续 TaskControl::signal_task(int num_task)

int start_index = butil::fmix64(pthread_numeric_id()) % PARKING_LOT_NUM;
num_task -= _pl[start_index].signal(1);

_pl[start_index].signal(1)的返回值就是返回的worker个数了。然后将num_task减去唤醒的个数就是需要唤醒,但未唤醒的任务个数。接着看:

    if (num_task > 0) {
        for (int i = 1; i < PARKING_LOT_NUM && num_task > 0; ++i) {
            if (++start_index >= PARKING_LOT_NUM) {
                start_index = 0;
            }
            num_task -= _pl[start_index].signal(1);
        }
    }

如果num_task不为0,则继续遍历TC的下一个PL,开始执行signal()操作去唤醒阻塞的worker。

接着:

    if (num_task > 0 &&
        FLAGS_bthread_min_concurrency > 0 &&    // test min_concurrency for performance
        _concurrency.load(butil::memory_order_relaxed) < FLAGS_bthread_concurrency) {
        // TODO: Reduce this lock
        BAIDU_SCOPED_LOCK(g_task_control_mutex);
        if (_concurrency.load(butil::memory_order_acquire) < FLAGS_bthread_concurrency) {
            add_workers(1);
        }
    }

如果任务还有剩余(表示消费者不够用),并且全局TC的并发度(_concurrency)小于gflag中配置的bthread_min_concurrency,那么就调用add_workers()去增加worker的数量。所以FLAGS_bthread_concurrency是worker(或者说是TG、pthread)个数的硬门槛

好了,至此从“生产”bthread任务的角度,已经串完了整个流程。再从消费者的角度看一下ParkingLot。

其实上一篇文章已经对“消费”bthread任务的流程,讲的比较多了,其中涉及到了工作窃取(work stealing)以及汇编语言完成的栈空间切换。但是其中涉及到pl的部分没有重点介绍,我们来回顾一下TG的wait_task()函数。该函数是用来等待任务出现的。

bool TaskGroup::wait_task(bthread_t* tid) {
    do {
        if (_last_pl_state.stopped()) {
            return false;
        }
        _pl->wait(_last_pl_state);
        if (steal_task(tid)) {
            return true;
        }
    } while (true);
}

_last_pl_state是ParkingLot::State,是TG的一个成员。回看其定义:

    class State {
    public:
        State(): val(0) {}
        bool stopped() const { return val & 1; }
    private:
    friend class ParkingLot;
        State(int val) : val(val) {}
        int val;
    };

TG初始化的时候_last_pl_state是无参数构造的,所以其val是0。

看下它的stopped(),其实就是判断val是否是奇数!由于我们生产任务时,调用pl的signal()总是累加一个偶数(num_task <<1):

        _pending_signal.fetch_add((num_task << 1), butil::memory_order_release);

所以TaskGroup::wait_task()中第一个if。if(_last_pl_state.stopped()) 在正常情况下都是不成立的!不会触发return。而是继续向下走到了:

//TaskGroup::wait_task中
        ...
        _pl->wait(_last_pl_state);

去等待任务出现。这个wait()在ParkingLot类中定义如下:

    // Wait for tasks.
    // If the `expected_state' does not match, wait() may finish directly.
    void wait(const State& expected_state) {
        futex_wait_private(&_pending_signal, expected_state.val, NULL);
    }

和生产流程中我们看到的wake()类似,这里的其对等操作wait(),封装的是futex_wait_private()。闲言少叙,其最终等价于:

futex(&_pending_signal, (FUTEX_WAIT|FUTEX_PRIVATE_FLAG), expected_state.val, NULL, NULL, 0);

关于futex的等待操作,在介绍唤醒操作时也已经提及。这里结合参数可以这样理解,它阻塞在&_pending_signal这里,因为expected_state实际传入的是_last_pl_state,所以该wait操作其预期值也便是_last_pl_state.val。如果&_pending_signal存储的值和_last_pl_state.val相同则阻塞(也就是说还没有任务出现),否则解除阻塞。走到:

//TaskGroup::wait_task中
        ...
        if (steal_task(tid)) {
            return true;
        }

去调用TG的steal_task()找任务。定义如下

(忽略宏BTHREAD_DONT_SAVE_PARKING_STATE)


    bool steal_task(bthread_t* tid) {
        if (_remote_rq.pop(tid)) {
            return true;
        }
        _last_pl_state = _pl->get_state();
        return _control->steal_task(tid, &_steal_seed, _steal_offset);
    }

在当前TG的_remote_rq无任务的时候,_last_pl_state会从pl同步一次状态。

PL中的get_state()定义如下:

    // Get a state for later wait().
    State get_state() {
        return _pending_signal.load(butil::memory_order_acquire);
    }

所以_last_pl_state同步的就是_pending_signal的最新值。其实从last_pl_state的名字早就可以看出,它存储的是上一次pl的状态了!

值得一提的是:&_pending_signal中存储的值其实并不表示任务的个数,尽管来任务来临时,它会做一次加法,但加的并不是任务数,并且在任务被消费后不会做减法。这里面值是没有具体意义的,其变化仅仅是一种状态“同步”的媒介!就像小说和电影中的工具人!。

好了,前面说了_last_pl_state正常情况下,判断stopped()都是不成立的,那么什么时候会成立呢?还是在ParkingLot中,它有一个stop()成员函数:

    // Wakeup suspended wait() and make them unwaitable ever. 
    void stop() {
        _pending_signal.fetch_or(1);
        futex_wake_private(&_pending_signal, 10000);
    }

其中会做fetch_or(1)操作,经此一役,_last_pl_state必然为奇数。而调用pl的stop()函数的地方只有一处,那就是TC中的stop_and_join(),而stop_and_join()又只在bthread_stop_world()这个函数调用的中被调用。调用链如下:

  • bthread_stop_world()
  • ParkingLot::stop()
  • TaskControl::stop_and_join()

正常我们都不会调用,bthread_stop_world(),所以在_last_pl_state.stopped()在服务正常运转的情况下都不会为false。

本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/V4ageZsK1yn6Be_AAhQRSg

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237227次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8063次阅读
 目录