锁是一个常见的同步概念,我们都听说过加锁(lock)或者解锁(unlock),当然学术一点的说法是获取(acquire)和释放(release)。
恰好pthread包含这几种锁的API,而C++11只包含其中的部分。接下来我主要通过pthread的API来展开本文。
mutex(mutual exclusive)即互斥量(互斥体)。也便是常说的互斥锁。 尽管名称不含lock,但是称之为锁,也是没有太大问题的。mutex无疑是最常见的多线程同步方式。其思想简单粗暴,多线程共享一个互斥量,然后线程之间去竞争。得到锁的线程可以进入临界区执行代码。
// 声明一个互斥量
pthread_mutex_t mtx;
// 初始化
pthread_mutex_init(&mtx, NULL);
// 加锁
pthread_mutex_lock(&mtx);
// 解锁
pthread_mutex_unlock(&mtx);
// 销毁
pthread_mutex_destroy(&mtx);
mutex是睡眠等待(sleep waiting)类型的锁,当线程抢互斥锁失败的时候,线程会陷入休眠。优点就是节省CPU资源,缺点就是休眠唤醒会消耗一点时间。另外自从Linux 2.6版以后,mutex完全用futex的API实现了,内部系统调用的开销大大减小。
值得一提的是,pthread的锁一般都有一个trylock的函数,比如对于互斥量:
ret = pthread_mutex_trylock(&mtx);
if (0 == ret) { // 加锁成功
...
pthread_mutex_unlock(&mtx);
} else if(EBUSY == ret){ // 锁正在被使用;
...
}
pthread_mutex_trylock用于以非阻塞的模式来请求互斥量。就好比各种IO函数都有一个noblock的模式一样,对于加锁这件事也有类似的非阻塞模式。
当线程尝试加锁时,如果锁已经被其他线程锁定,该线程就会阻塞住,直到能成功acquire。但有时候我们不希望这样。pthread_mutex_trylock在被其他线程锁定时,会返回特殊错误码。加锁成返回0,仅当成功但时候,我们才能解锁在后面进行解锁操作!
C++11开始引入了多线程库
此外,依据同一线程是否能多次加锁,把互斥量又分为如下两类:
若同一线程对非递归的互斥量多次加锁,可能会造成死锁。递归互斥量则无此风险。C++11中有递归互斥量的API:std::recursive_mutex。对于pthread则可以通过给mutex添加PTHREAD_MUTEX_RECURSIVE 属性的方式来使用递归互斥量:
// 声明一个互斥量
pthread_mutex_t mtx;
// 声明一个互斥量的属性变量
pthread_mutexattr_t mtx_attr;
// 初始化互斥量的属性变量
pthread_mutexattr_init(&mtx_attr);
// 设置递归互斥量的属性
pthread_mutexattr_settype(&mtx_attr, PTHREAD_MUTEX_RECURSIVE);
// 把属性赋值给互斥量
pthread_mutext_init(&mtx, &mutext_attr);
然而对于递归互斥量或者说可重入锁的使用则需要克制。Stevens大神生前在《APUE》中说『使用好它是十分tricky的,仅当没有其他解决方案时才使用』。
可重入锁这个概念和称呼的走俏多半是Java语言的功劳。
请注意条件变量不是锁,它是一种线程间的通讯机制,并且几乎总是和互斥量一起使用的。所以互斥量和条件变量二者一般是成套出现的。比如C++11中也有条件变量的API: std::condition_variable。
对于pthread:
// 声明一个互斥量
pthread_mutex_t mtx;
// 声明一个条件变量
pthread_cond_t cond;
...
// 初始化
pthread_mutex_init(&mtx, NULL);
pthread_cond_init(&cond, NULL);
// 加锁
pthread_mutex_lock(&mtx);
// 加锁成功,等待条件变量触发
pthread_cond_wait(&cond, &mtx);
...
// 加锁
pthread_mutex_lock(&mtx);
pthread_cond_signal(&cond);
...
// 解锁
pthread_mutex_unlock(&mtx);
// 销毁
pthread_mutex_destroy(&mtx)
pthread_cond_wait函数会把条件变量和互斥量都传入。并且多线程调用的时候条件变量和互斥量一定要一一对应,不能一个条件变量在不同线程中wait的时候传入不同的互斥量。否则是未定义结果。
关于是先解锁互斥量还是先进行条件变量的通知,是另外一个比较大的议题。有种论断说:先解锁互斥量再通知条件变量可以减少多余的上下文切换,进而提高效率。这种说法是基于一种实现假设:先通知条件变量,再解锁。可能让其他等待条件变量的线程被唤醒了,但是此时互斥量还没解锁,从而再次陷入休眠。然而对于另外一些实现,比如Linux系统,则通过等待变形(wait morphing)解决了这一问题。所以先通知再解锁也没用问题。
另外在使用条件变量的过程中有个稍微违反直觉的写法:那就是使用while而不是if来做判断状态是否满足。这样做的原因有二:
比如半同步/半reactor的网络模型中,在工作线程消费fd队列的时候:
while (1) {
if (pthread_mutex_lock(&mtx) != 0) { // 加锁
... // 异常逻辑
}
while (!queue.empty()) {
if (pthread_cond_wait(&cond, &mtx) != 0) {
... // 异常逻辑
}
}
auto data = queue.pop();
if (pthread_mutex_unlock(&mtx) != 0) { // 解锁
... // 异常逻辑
}
process(data); // 处理流程,业务逻辑
}
以上代码摘自我这篇文章:
[高山仰之可极,谈半同步/半异步网络并发模型] read-write lock(读写锁)
顾名思义『读写锁』就是对于临界区区分读和写。在读多写少的场景下,不加区分的使用互斥量显然是有点浪费的。此时便该上演读写锁的拿手好戏。
读写锁有一个别称叫『共享-独占锁』。不过单看『共享-独占锁』或者『读写锁』这两个名称,其实并未区分对于读和写,到底谁共享,谁独占。可能会让人误以为读写锁是一种更为泛化的称呼,其实不是。读写锁的含义是准确的:是一种 读共享,写独占的锁。
读写锁的特性:
因而适用于多读少写的场景。
// 声明一个读写锁
pthread_rwlock_t rwlock;
...
// 在读之前加读锁
pthread_rwlock_rdlock(&rwlock);
... 共享资源的读操作
// 读完释放锁
pthread_rwlock_unlock(&rwlock);
// 在写之前加写锁
pthread_rwlock_wrlock(&rwlock);
... 共享资源的写操作
// 写完释放锁
pthread_rwlock_unlock(&rwlock);
// 销毁读写锁
pthread_rwlock_destroy(&rwlock);
其实加读锁和加写锁这两个说法可能会造成误导,让人误以为是有两把锁,其实读写锁是一个锁。所谓加读锁和加写锁,准确的说法可能是『给读写锁加读模式的锁定和加写模式的锁定』。
读写锁和互斥量一样也有trylock函数,也是以非阻塞地形式来请求锁,不会导致阻塞。
pthread_rwlock_tryrdlock(&rwlock)
pthread_rwlock_trywrlock(&rwlock)
C++11中有互斥量、条件变量但是并没有引入读写锁。而在C++17中出现了一种新锁:std::shared_mutex。用它可以模拟实现出读写锁。demo代码可以直接参考cppreference:
https://en.cppreference.com/w/cpp/thread/shared_mutex
另外多读少写的场景有些特殊场景,可以用特殊的数据结构减少锁使用:
我一张口,你就会发现:无非是空间换时间的老套路了。
自旋之名颇为玄妙,第一次听闻常让人略觉高大。但和无数个好似『故意把简单概念复杂化』的计算机术语一样,自旋锁的本质简单的难以置信。
要了解自旋锁,首先了解自旋。什么是自旋(spin)呢?更为通俗的一个词是『忙等待』(busy waiting)。最最通俗的一个理解,其实就是死循环……。
单看使用方法和使用互斥量的代码是差不多的。只不过自旋锁不会引起线程休眠。当共享资源的状态不满足的时候,自旋锁会不停地循环检测状态。因为不会陷入休眠,而是忙等待的方式也就不需要条件变量。
这是优点也是缺点。不休眠就不会引起上下文切换,但是会比较浪费CPU。
// 声明一个自旋锁变量
pthread_spinlock_t spinlock;
// 初始化
pthread_spin_init(&spinlock, 0);
// 加锁
pthread_spin_lock(&spinlock);
// 解锁
pthread_spin_unlock(&spinlock);
// 销毁
pthread_spin_destroy(&spinlock);
pthread_spin_init函数的第二个参数名为pshared(int类型)。表示的是是否能进程间共享自旋锁。这被称之为Thread Process-Shared Synchronization。互斥量的通过属性也可以把互斥量设置成进程间共享的。pshared有两个枚举值:
在Linux上的glibc中这两个枚举值分别是0和1(Mac上不是)。所以通常也会看到直接传0的代码。你可能觉得不使用宏,直接用数字硬编码不是一个好习惯。的确,妥妥的Magic Number,但还有一个有趣的事实你需要了解:并不是所有实现都支持自旋锁设置pshared。比如:
int pthread_spin_init (pthread_spinlock_t *lock, int pshared) {
/* Relaxed MO is fine because this is an initializing store. */
atomic_store_relaxed (lock, 0);
return0;
}
所以直接传0可能也无伤大雅。
自旋锁 VS 互斥量+条件变量 孰优孰劣?肯定要看具体的使用场景,(我好像在说片汤话)。当你不知道在你的使用场景下这两种锁该用哪个的时候,那就是用互斥量吧!或者通过压测的判断,不过大多数时候我们好像并不需要这么一个pthread的自旋锁,知友们可以提供一些自旋锁的使用参考。
你还知道哪些锁类型?
或者哪些线程同步机制(不一定叫锁)?
本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/z297vQBfraPn8IzbV9VXUQ
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。