有位朋友,某天突然问磊哥:在 Java 中,防止重复提交最简单的方案是什么?
这句话中包含了两个关键信息,第一:防止重复提交;第二:最简单。
于是磊哥问他,是单机环境还是分布式环境?
得到的反馈是单机环境,那就简单了,于是磊哥就开始装*了。
话不多说,我们先来复现这个问题。
根据朋友的反馈,大致的场景是这样的,如下图所示:
简化的模拟代码如下(基于 Spring Boot):
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@RequestMapping("/user")
@RestController
public class UserController {
/**
* 被重复请求的方法
*/
@RequestMapping("/add")
public String addUser(String id) {
// 业务代码...
System.out.println("添加用户ID:" + id);
return "执行成功!";
}
}
于是磊哥就想到:通过前、后端分别拦截的方式来解决数据重复提交的问题。
前端拦截是指通过 HTML 页面来拦截重复请求,比如在用户点击完“提交”按钮后,我们可以把按钮设置为不可用或者隐藏状态。
执行效果如下图所示:
前端拦截的实现代码:
<html>
<script>
function subCli(){
// 按钮设置为不可用
document.getElementById("btn_sub").disabled="disabled";
document.getElementById("dv1").innerText = "按钮被点击了~";
}
</script>
<body style="margin-top: 100px;margin-left: 100px;">
<input id="btn_sub" type="button" value=" 提 交 " onclick="subCli()">
<div id="dv1" style="margin-top: 80px;"></div>
</body>
</html>
但前端拦截有一个致命的问题,如果是懂行的程序员或非法用户可以直接绕过前端页面,通过模拟请求来重复提交请求,比如充值了 100 元,重复提交了 10 次变成了 1000 元(瞬间发现了一个致富的好办法)。
所以除了前端拦截一部分正常的误操作之外,后端的拦截也是必不可少。
后端拦截的实现思路是在方法执行之前,先判断此业务是否已经执行过,如果执行过则不再执行,否则就正常执行。
我们将请求的业务 ID 存储在内存中,并且通过添加互斥锁来保证多线程下的程序执行安全,大体实现思路如下图所示:
然而,将数据存储在内存中,最简单的方法就是使用 HashMap
存储,或者是使用 Guava Cache 也是同样的效果,但很显然 HashMap
可以更快的实现功能,所以我们先来实现一个 HashMap
的防重(防止重复)版本。
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.util.HashMap;
import java.util.Map;
/**
* 普通 Map 版本
*/
@RequestMapping("/user")
@RestController
public class UserController3 {
// 缓存 ID 集合
private Map<String, Integer> reqCache = new HashMap<>();
@RequestMapping("/add")
public String addUser(String id) {
// 非空判断(忽略)...
synchronized (this.getClass()) {
// 重复请求判断
if (reqCache.containsKey(id)) {
// 重复请求
System.out.println("请勿重复提交!!!" + id);
return "执行失败";
}
// 存储请求 ID
reqCache.put(id, 1);
}
// 业务代码...
System.out.println("添加用户ID:" + id);
return "执行成功!";
}
}
实现效果如下图所示:
存在的问题:此实现方式有一个致命的问题,因为 HashMap
是无限增长的,因此它会占用越来越多的内存,并且随着 HashMap
数量的增加查找的速度也会降低,所以我们需要实现一个可以自动“清除”过期数据的实现方案。
此版本解决了 HashMap
无限增长的问题,它使用数组加下标计数器(reqCacheCounter)的方式,实现了固定数组的循环存储。
当数组存储到最后一位时,将数组的存储下标设置 0,再从头开始存储数据,实现代码如下:
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.util.Arrays;
@RequestMapping("/user")
@RestController
public class UserController {
private static String[] reqCache = new String[100]; // 请求 ID 存储集合
private static Integer reqCacheCounter = 0; // 请求计数器(指示 ID 存储的位置)
@RequestMapping("/add")
public String addUser(String id) {
// 非空判断(忽略)...
synchronized (this.getClass()) {
// 重复请求判断
if (Arrays.asList(reqCache).contains(id)) {
// 重复请求
System.out.println("请勿重复提交!!!" + id);
return "执行失败";
}
// 记录请求 ID
if (reqCacheCounter >= reqCache.length) reqCacheCounter = 0; // 重置计数器
reqCache[reqCacheCounter] = id; // 将 ID 保存到缓存
reqCacheCounter++; // 下标往后移一位
}
// 业务代码...
System.out.println("添加用户ID:" + id);
return "执行成功!";
}
}
上一种实现方法将判断和添加业务,都放入 synchronized
中进行加锁操作,这样显然性能不是很高,于是我们可以使用单例中著名的 DCL(Double Checked Locking,双重检测锁)来优化代码的执行效率,实现代码如下:
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.util.Arrays;
@RequestMapping("/user")
@RestController
public class UserController {
private static String[] reqCache = new String[100]; // 请求 ID 存储集合
private static Integer reqCacheCounter = 0; // 请求计数器(指示 ID 存储的位置)
@RequestMapping("/add")
public String addUser(String id) {
// 非空判断(忽略)...
// 重复请求判断
if (Arrays.asList(reqCache).contains(id)) {
// 重复请求
System.out.println("请勿重复提交!!!" + id);
return "执行失败";
}
synchronized (this.getClass()) {
// 双重检查锁(DCL,double checked locking)提高程序的执行效率
if (Arrays.asList(reqCache).contains(id)) {
// 重复请求
System.out.println("请勿重复提交!!!" + id);
return "执行失败";
}
// 记录请求 ID
if (reqCacheCounter >= reqCache.length) reqCacheCounter = 0; // 重置计数器
reqCache[reqCacheCounter] = id; // 将 ID 保存到缓存
reqCacheCounter++; // 下标往后移一位
}
// 业务代码...
System.out.println("添加用户ID:" + id);
return "执行成功!";
}
}
注意:DCL 适用于重复提交频繁比较高的业务场景,对于相反的业务场景下 DCL 并不适用。
上面的代码基本已经实现了重复数据的拦截,但显然不够简洁和优雅,比如下标计数器的声明和业务处理等,但值得庆幸的是 Apache 为我们提供了一个 commons-collections 的框架,里面有一个非常好用的数据结构 LRUMap
可以保存指定数量的固定的数据,并且它会按照 LRU 算法,帮你清除最不常用的数据。
小贴士:LRU 是 Least Recently Used 的缩写,即最近最少使用,是一种常用的数据淘汰算法,选择最近最久未使用的数据予以淘汰。
首先,我们先来添加 Apache commons collections 的引用:
<!-- 集合工具类 apache commons collections -->
<!-- https://mvnrepository.com/artifact/org.apache.commons/commons-collections4 -->
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-collections4</artifactId>
<version>4.4</version>
</dependency>
实现代码如下:
import org.apache.commons.collections4.map.LRUMap;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@RequestMapping("/user")
@RestController
public class UserController {
// 最大容量 100 个,根据 LRU 算法淘汰数据的 Map 集合
private LRUMap<String, Integer> reqCache = new LRUMap<>(100);
@RequestMapping("/add")
public String addUser(String id) {
// 非空判断(忽略)...
synchronized (this.getClass()) {
// 重复请求判断
if (reqCache.containsKey(id)) {
// 重复请求
System.out.println("请勿重复提交!!!" + id);
return "执行失败";
}
// 存储请求 ID
reqCache.put(id, 1);
}
// 业务代码...
System.out.println("添加用户ID:" + id);
return "执行成功!";
}
}
使用了 LRUMap
之后,代码显然简洁了很多。
以上都是方法级别的实现方案,然而在实际的业务中,我们可能有很多的方法都需要防重,那么接下来我们就来封装一个公共的方法,以供所有类使用:
import org.apache.commons.collections4.map.LRUMap;
/**
* 幂等性判断
*/
public class IdempotentUtils {
// 根据 LRU(Least Recently Used,最近最少使用)算法淘汰数据的 Map 集合,最大容量 100 个
private static LRUMap<String, Integer> reqCache = new LRUMap<>(100);
/**
* 幂等性判断
* @return
*/
public static boolean judge(String id, Object lockClass) {
synchronized (lockClass) {
// 重复请求判断
if (reqCache.containsKey(id)) {
// 重复请求
System.out.println("请勿重复提交!!!" + id);
return false;
}
// 非重复请求,存储请求 ID
reqCache.put(id, 1);
}
return true;
}
}
调用代码如下:
import com.example.idempote.util.IdempotentUtils;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@RequestMapping("/user")
@RestController
public class UserController4 {
@RequestMapping("/add")
public String addUser(String id) {
// 非空判断(忽略)...
// -------------- 幂等性调用(开始) --------------
if (!IdempotentUtils.judge(id, this.getClass())) {
return "执行失败";
}
// -------------- 幂等性调用(结束) --------------
// 业务代码...
System.out.println("添加用户ID:" + id);
return "执行成功!";
}
}
小贴士:一般情况下代码写到这里就结束了,但想要更简洁也是可以实现的,你可以通过自定义注解,将业务代码写到注解中,需要调用的方法只需要写一行注解就可以防止数据重复提交了,老铁们可以自行尝试一下(需要磊哥撸一篇的,评论区留言 666)。
既然 LRUMap
如此强大,我们就来看看它是如何实现的。
LRUMap
的本质是持有头结点的环回双链表结构,它的存储结构如下:
AbstractLinkedMap.LinkEntry entry;
当调用查询方法时,会将使用的元素放在双链表 header 的前一个位置,源码如下:
public V get(Object key, boolean updateToMRU) {
LinkEntry<K, V> entry = this.getEntry(key);
if (entry == null) {
return null;
} else {
if (updateToMRU) {
this.moveToMRU(entry);
}
return entry.getValue();
}
}
protected void moveToMRU(LinkEntry<K, V> entry) {
if (entry.after != this.header) {
++this.modCount;
if (entry.before == null) {
throw new IllegalStateException("Entry.before is null. This should not occur if your keys are immutable, and you have used synchronization properly.");
}
entry.before.after = entry.after;
entry.after.before = entry.before;
entry.after = this.header;
entry.before = this.header.before;
this.header.before.after = entry;
this.header.before = entry;
} else if (entry == this.header) {
throw new IllegalStateException("Can't move header to MRU This should not occur if your keys are immutable, and you have used synchronization properly.");
}
}
如果新增元素时,容量满了就会移除 header 的后一个元素,添加源码如下:
protected void addMapping(int hashIndex, int hashCode, K key, V value) {
// 判断容器是否已满
if (this.isFull()) {
LinkEntry<K, V> reuse = this.header.after;
boolean removeLRUEntry = false;
if (!this.scanUntilRemovable) {
removeLRUEntry = this.removeLRU(reuse);
} else {
while(reuse != this.header && reuse != null) {
if (this.removeLRU(reuse)) {
removeLRUEntry = true;
break;
}
reuse = reuse.after;
}
if (reuse == null) {
throw new IllegalStateException("Entry.after=null, header.after=" + this.header.after + " header.before=" + this.header.before + " key=" + key + " value=" + value + " size=" + this.size + " maxSize=" + this.maxSize + " This should not occur if your keys are immutable, and you have used synchronization properly.");
}
}
if (removeLRUEntry) {
if (reuse == null) {
throw new IllegalStateException("reuse=null, header.after=" + this.header.after + " header.before=" + this.header.before + " key=" + key + " value=" + value + " size=" + this.size + " maxSize=" + this.maxSize + " This should not occur if your keys are immutable, and you have used synchronization properly.");
}
this.reuseMapping(reuse, hashIndex, hashCode, key, value);
} else {
super.addMapping(hashIndex, hashCode, key, value);
}
} else {
super.addMapping(hashIndex, hashCode, key, value);
}
}
判断容量的源码:
public boolean isFull() {
return size >= maxSize;
}
容量未满就直接添加数据:
super.addMapping(hashIndex, hashCode, key, value);
如果容量满了,就调用 reuseMapping
方法使用 LRU 算法对数据进行清除。
综合来说:LRUMap
的本质是持有头结点的环回双链表结构,当使用元素时,就将该元素放在双链表 header
的前一个位置,在新增元素时,如果容量满了就会移除 header
的后一个元素。
本文讲了防止数据重复提交的 6 种方法,首先是前端的拦截,通过隐藏和设置按钮的不可用来屏蔽正常操作下的重复提交。但为了避免非正常渠道的重复提交,我们又实现了 5 个版本的后端拦截:HashMap 版、固定数组版、双重检测锁的数组版、LRUMap 版和 LRUMap 的封装版。
本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/YdwwWvYBRW3drSJdw65IPQ
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。