日志无论对于程序还是程序员都非常重要,有多重要呢,想要长期在公司健健康康的干下去就得学会阶段性划水,阶段性划水的一大关键的就是干活快过预期但是装作。。。不对,这个开头不对劲,下面重来。
日志无论对于程序还是程序员都非常重要,程序员解决问题的快慢除了经验外,就是看日志能不能有效地记录问题发生的现场以及上下文等等。
那么让让程序记录有效的日志,除了程序内记日志的点位尽量精准外,还需要有一个称手的 Logger 。一个好的 Logger (日志记录器) 要能提供以下这些能力:
TRACE
,DEBUG
,INFO
,WARN
,ERROR
等。JSON
形式的,这样可以让统一日志平台,通过 logstash 之类的组件直接把日志聚合到日志平台上去。log rotation
, 按照日期、时间间隔或者文件大小对日志进行切割。今天我带大家一起看看怎么在使用 Go 语言开发的项目里打造一个称手的 Logger,在这之前让我们先回到 2009 年,看看 Go 语言自诞生之初就提供给我们的内置 Logger。
Go 语言自带 log 内置包,为我们提供了一个默认的 Logger,可以直接使用。这个库的详细用法可以在官方的文档里找到:https://pkg.go.dev/log
使用 log 记录日志,默认会输出到控制台中。比如下面这个例子:
package main
import (
"log"
"net/http"
)
func main() {
simpleHttpGet("www.baidu.com")
simpleHttpGet("https://www.baidu.com")
}
func simpleHttpGet(url string) {
resp, err := http.Get(url)
if err != nil {
log.Printf("Error fetching url %s : %s", url, err.Error())
} else {
log.Printf("Status Code for %s : %s", url, resp.Status)
resp.Body.Close()
}
return
}
这个例程中,分别向两个网址进行 GET 请求,然后记录了一下返回状态码 / 请求错误。执行程序后会有类似输出:
2022/05/15 15:15:26 Error fetching url www.baidu.com : Get "www.baidu.com": unsupported protocol scheme ""
2022/05/15 15:15:26 Status Code for https://www.baidu.com : 200 OK
因为第一次请求的 URL 中协议头缺失, 所以不能成功发起请求,日志也很好的记录了错误信息。
Go 内置的 log 包当然也支持把日志输出到文件中,通过log.SetOutput
可以把任何 io.Writer
的实现设置成日志的输出。下面我们把上面那个例程修改成向文件输出日志。
package main
import (
"log"
"net/http"
"os"
)
func main() {
SetupLogger()
simpleHttpGet("www.baidu.com")
simpleHttpGet("https://www.baidu.com")
}
func SetupLogger() {
logFileLocation, _ := os.OpenFile("/tmp/test.log", os.O_CREATE|os.O_APPEND|os.O_RDWR, 0644)
log.SetOutput(logFileLocation)
}
func simpleHttpGet(url string) {
resp, err := http.Get(url)
if err != nil {
log.Printf("Error fetching url %s : %s", url, err.Error())
} else {
log.Printf("Status Code for %s : %s", url, resp.Status)
resp.Body.Close()
}
return
}
大家可以自己试一下运行效果,这里不再做过多演示。
原生 Logger 的优点,显而易见,简单、开箱即用,不用引用外部的三方库。我们可以按照开头处提出的对于一个 Logger 的五个标准再看一下默认Logger 是否能在项目里使用。
仅限基本的日志级别
只有一个Print
选项。不支持INFO
/DEBUG
等多个级别。
对于错误日志,它有Fatal
和Panic
Fatal日志通过调用os.Exit(1)
来结束程序
Panic日志在写入日志消息之后抛出一个panic
但是它缺少一个ERROR
日志级别,这个级别可以在不抛出panic
或退出程序的情况下记录错误
缺乏结构化日志格式的能力——只支持简单文本输出,不能把日志记录格式化成 JSON
格式。
不提供日志切割的能力。
在 Go 的生态中,有不少可以选择的日志库,之前我们简单介绍过 logrus
这个库的使用:[点我查看] ,它与Go的内置 log 库在 api 层面兼容,直接实现了log.Logger
接口,支持把程序的系统级 Logger 切换成它。
不过 logrus 在性能敏感的场景下就显得不香了,用的更多的是 Uber 开源的 zap 日志库。由于 Uber 在当今 Go 生态中的贡献度很高,加之它本身业务—网约车的性能敏感场景,所以 Uber 开源的库很受欢迎。现在做项目,使用 Zap 做日志Logger 的非常多。程序员的内心OS应该是,不管我这并发高不高,上就完事了,万一哪天能从2个并发突然干成 2W 并发呢。
Zap 性能高的一大原因是:不用反射,日志里每个要写入的字段都得携带着类型
logger.Info(
"Success..",
zap.String("statusCode", resp.Status),
zap.String("url", url))
上面向日志里写入了一条记录,Message 是 "Success.." 另外写入了两个字符串键值对。Zap 针对日志里要写入的字段,每个类型都有一个对应的方法把字段转成 zap.Field
类型 。比如:
zap.Int('key', 123)
zap.Bool('key', true)
zap.Error('err', err)
zap.Any('arbitraryType', &User{})
还有很多中这种类型方法,就不一一列举啦。这种记录日志的方式造成在使用体验上稍稍有点差,不过考虑到性能上收益这点使用体验上的损失也能接受。
下面我们先来学习一下 Zap 的使用方法,再对项目中使用 Zap 时做些自定义的配置和封装,让它变得更好用,最重要的是匹配上我们开头提出的关于好的 Logger 的五条标准。
首先说一下,zap 的安装方式,直接运行以下命令下载 zap 到本地的依赖库中。
go get -u go.uber.org/zap
我们先说 zap 提供的配置好的 Logger ,稍后会对它进行自定义。
zap.NewProduction()
、zap.NewDevelopment()
、zap.Example()
这三个方法,都可以创建 Logger。zap.NewProduction()
创建的 Logger 在记录日志时会自动记录调用函数的信息、打日志的时间等,这三个不用纠结,直接都用zap.NewProduction()
,且在项目中使用的时候,我们不会直接用 zap 配置好的 Logger ,需要再做更细致的定制。zap 的 Logger 提供了记录不同等级的日志的方法,像从低到高的日志等级一般有:Debug、Info、Warn、Error 这些级别都有对应的方法。他们的使用方式都一样,下面是 Info 方法的方法签名。
func (log *Logger) Info(msg string, fields ...Field) {
if ce := log.check(InfoLevel, msg); ce != nil {
ce.Write(fields...)
}
}
方法的第一个参数是日志里 msg
字段要记录的信息,msg
是日志行记录里一个固定的字段,要再添加其他字段到日志,直接传递 zap.Field
类型的参数即可,上面我们已经说过zap.Field
类型的字段,就是由 zap.String("key", "value")
这类方法创建出来的。由于 Info 方法签名里 fileds
参数声明是可变参数,所以支持添加任意多个字段到日志行记录里, 比如例程里的:
logger.Info("Success..", zap.String("statusCode", resp.Status), zap.String("url", url))
即日志行记录里,除了 msg
字段,还添加了statusCode
,url
两个自定义字段。上面例程里使用的zap.NewProduction()
创建的 Logger 会向控制台输出JSON
格式的日志行,比如上面使用Info
方法后,控制台会有类似下面的输出。
{"level":"info","ts":1558882294.665447,"caller":"basiclogger/UberGoLogger.go:31","msg":"Success..","statusCode":"200 OK","url":"https://www.baidu.com"}
下面我们把 zap 做进一步的自定义配置,让日志不光能输出到控制台,也能输出到文件,再把日志时间由时间戳格式,换成更容易被人类看懂的DateTime
时间格式。
下面少说话,直接上代码,必要的解释放在了注释里。
var logger *zap.Logger
func init() {
encoderConfig := zap.NewProductionEncoderConfig()
// 设置日志记录中时间的格式
encoderConfig.EncodeTime = zapcore.ISO8601TimeEncoder
// 日志Encoder 还是JSONEncoder,把日志行格式化成JSON格式的
encoder := zapcore.NewJSONEncoder(encoderConfig)
file, _ := os.OpenFile("/tmp/test.log", os.O_CREATE|os.O_APPEND|os.O_WRONLY, 644)
fileWriteSyncer = zapcore.AddSync(file)
core := zapcore.NewTee(
// 同时向控制台和文件写日志, 生产环境记得把控制台写入去掉,日志记录的基本是Debug 及以上,生产环境记得改成Info
zapcore.NewCore(encoder, zapcore.AddSync(os.Stdout), zapcore.DebugLevel),
zapcore.NewCore(encoder, fileWriteSyncer, zapcore.DebugLevel),
)
logger = zap.New(core)
}
Zap 本身不支持日志切割,可以借助另外一个库 lumberjack 协助完成切割。
func getFileLogWriter() (writeSyncer zapcore.WriteSyncer) {
// 使用 lumberjack 实现 log rotate
lumberJackLogger := &lumberjack.Logger{
Filename: "/tmp/test.log",
MaxSize: 100, // 单个文件最大100M
MaxBackups: 60, // 多于 60 个日志文件后,清理较旧的日志
MaxAge: 1, // 一天一切割
Compress: false,
}
return zapcore.AddSync(lumberJackLogger)
}
我们不能每次使用日志,都这么设置一番,所以最好的还是把这些配置初始化放在一个单独的包里,这样在项目中初始化一次即可。
除了上面的那些配置外,我们的配置里还少了些日志调用方的信息,比如函数名、文件位置、行号等,这样在排查问题看日志的时候,定位问题的时效会提高不少。
这里用到了我们之前文章的知识点,忘记的可以等看完这篇文章后,回去复习一下,现在先不要点走:[如何在 Go 函数中获取调用者的函数名、文件名、行号...]
我们对 Logger 再做一下封装。
// 发送私信 go-logger 给公众号「网管叨bi叨」
// 可获得完整代码和使用Demo
package zlog
// 简单封装一下对 zap 日志库的使用
// 使用方式:
// zlog.Debug("hello", zap.String("name", "Kevin"), zap.Any("arbitraryObj", dummyObject))
// zlog.Info("hello", zap.String("name", "Kevin"), zap.Any("arbitraryObj", dummyObject))
// zlog.Warn("hello", zap.String("name", "Kevin"), zap.Any("arbitraryObj", dummyObject))
var logger *zap.Logger
func init() {
......
}
func getFileLogWriter() (writeSyncer zapcore.WriteSyncer) {
......
}
func Info(message string, fields ...zap.Field) {
callerFields := getCallerInfoForLog()
fields = append(fields, callerFields...)
logger.Info(message, fields...)
}
func Debug(message string, fields ...zap.Field) {
callerFields := getCallerInfoForLog()
fields = append(fields, callerFields...)
logger.Debug(message, fields...)
}
func Error(message string, fields ...zap.Field) {
callerFields := getCallerInfoForLog()
fields = append(fields, callerFields...)
logger.Error(message, fields...)
}
func Warn(message string, fields ...zap.Field) {
callerFields := getCallerInfoForLog()
fields = append(fields, callerFields...)
logger.Warn(message, fields...)
}
func getCallerInfoForLog() (callerFields []zap.Field) {
pc, file, line, ok := runtime.Caller(2) // 回溯两层,拿到写日志的调用方的函数信息
if !ok {
return
}
funcName := runtime.FuncForPC(pc).Name()
funcName = path.Base(funcName) //Base函数返回路径的最后一个元素,只保留函数名
callerFields = append(callerFields, zap.String("func", funcName), zap.String("file", file), zap.Int("line", line))
return
}
为啥不用 zap.New(core, zap.AddCaller())
这种方式,在日志行里添加调用方的信息呢?主要还是想更灵活点,能自己制定对应的日志字段,所以把 Caller
的几个信息放到单独的字段里,等把日志收集到日志平台上去后,查询日志的时候也更利于检索。
在下面的例程中尝试使用我们封装好的日志 Logger 做个简单的测试。
package main
import (
"example.com/utils/zlog"
)
type User strunct {
Name stirng
}
func main() {
user := &User{
"Name": "Kevin"
}
zlog.Info("test log", zap.Any("user", user))
}
输出类似下面的输出。
{"level":"info","ts":"2022-05-15T21:22:22.687+0800","msg":"test log","res":{"Name":"Kevin"},"func":"main.Main","file":"/Users/Kevin/go/src/example.com/demo/zap.go","line":84}
关于 Zap Logger 的定制化和封装,这里只是举了一些基本又必要的入门级定制化,等大家掌握后,可以参照官方文档提供的接口进行更多定制化。
本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/3GcZEuNDXgzjJrF8TkfbdQ
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。