你好哇! 之前写了三篇 [#Golang 并发编程] 的文章了,这次来换换口味,开个 手撕源码 的新坑!一起来扒一扒 Go 语言高性能 local cache 库 bigcache,看看能不能把开源大佬们的骚操作带到项目里去装一装(?)
个人认为学习开源项目的收益:
缓存是系统提升并发能力、降低时延的利器,根据存储介质和使用场景,我们一般又会使用本地缓存与分布式缓存两种手段。本地缓存一般是在进程内的,最简单的,用 go 的 sync.Map
就能实现一个简单的并发安全的本地缓存了。常见的,将一些静态的、配置类的数据放置在本地缓存中,能有效降低到下游存储的压力。分布式缓存一般会用 redis 或 memcached 等分布式内存数据库来实现,能做到分布式、无状态。这次先研究下 bigcache 后续有机会再挖一挖这里。
bigcache 的开发者是 allegro,是波兰的一个电商网站,参考资料中给出了他们的技术博客的原文,文中详细描述了他们问题的背景以及思考,值得研究。他们的需求主要是:
开发团队经过了一番对比,选择了 go 语言(高并发度、带内存管理安全性比 C/C++ 好),抛弃了分布式缓存组件(redis/memcached/couchbase),主要理由是多一跳网络开销。这里我表示怀疑,P999 400ms 的时延其实不至于担心到 redis 网络那点时间,分布式环境下 local cache 不同机器间的数据不一致带来的 cache miss 可能更蛋疼。 最终开发团队选择了实现一个支持以下特性的内存缓存库:
设计上如何做到并发安全呢?最简单的思路就是给 map 上一把 sync.RWMutex
即读写锁。然而当缓存项过多时,并发请求会造成锁冲突,因此需要降低锁粒度。bigcache 采用了分布式系统里常用的 sharding 思路,即将一个大 map 拆分成 N 个小 map,我们称为一个 shard(分片)
如 bigcache.go
的声明,我们初始化得到的 BigCache
,核心实际上是一个 []*cacheShard
,缓存的写入、淘汰等核心逻辑都在 cacheShard
中了
type BigCache struct {
shards []*cacheShard
lifeWindow uint64
clock clock
hash Hasher
config Config
shardMask uint64
close chan struct{}
}
那么在写入一个 key value 缓存时,是如何做分片的呢?
func (c *BigCache) Set(key string, entry []byte) error {
hashedKey := c.hash.Sum64(key)
shard := c.getShard(hashedKey)
return shard.set(key, hashedKey, entry)
}
这里会首先进行一次 hash 操作,将 string key hash 到一个 uint64
类型的 key。再根据这个数字 key 去做 sharding
func (c *BigCache) getShard(hashedKey uint64) (shard *cacheShard) {
return c.shards[hashedKey&c.shardMask]
}
这里把取余的操作用位运算来实现了,这也解释了为什么在使用 bigcache 的时候需要使用 2 的幂来初始化 shard num 了
cache := &BigCache{
shards: make([]*cacheShard, config.Shards),
lifeWindow: uint64(config.LifeWindow.Seconds()),
clock: clock,
hash: config.Hasher,
config: config,
// config.Shards 必须是 2 的幂
// 减一后得到一个二进制结果全为 1 的 mask
shardMask: uint64(config.Shards - 1),
close: make(chan struct{}),
}
例如使用 1024 作为 shard num 时,mask 值为 1024 - 1
即二进制的 '111111111',使用 num & mask
时,即可获得 num % mask
的效果
需要注意,这里的 hash 可能是会冲突的,虽然概率极小,当出现 hash 冲突时,bigcache 将直接返回结果不存在:
func (s *cacheShard) get(key string, hashedKey uint64) ([]byte, error) {
s.lock.RLock()
wrappedEntry, err := s.getWrappedEntry(hashedKey)
if err != nil {
s.lock.RUnlock()
return nil, err
}
// 这里会将二进制 buffer 按顺序解开
// 在打包时将 key 打包的作用就体现出来了
// 如果这次操作的 key 和打包时的 key 不相同
// 则说明发生了冲突,不会错误地返回另一个 key 的缓存结果
if entryKey := readKeyFromEntry(wrappedEntry); key != entryKey {
s.lock.RUnlock()
s.collision()
if s.isVerbose {
s.logger.Printf("Collision detected. Both %q and %q have the same hash %x", key, entryKey, hashedKey)
}
return nil, ErrEntryNotFound
}
entry := readEntry(wrappedEntry)
s.lock.RUnlock()
s.hit(hashedKey)
return entry, nil
}
bigcache 对每个 shard 使用了一个类似 ringbuffer
的 BytesQueue
结构,定义如下:
type cacheShard struct {
// hashed key => bytes queue index
hashmap map[uint64]uint32
entries queue.BytesQueue
lock sync.RWMutex
entryBuffer []byte
onRemove onRemoveCallback
isVerbose bool
statsEnabled bool
logger Logger
clock clock
lifeWindow uint64
hashmapStats map[uint64]uint32
stats Stats
}
下图很好地解释了 cacheShard
的底层结构~
图片来自 https://medium.com/codex/our-go-cache-library-choices-406f2662d6b
在处理完 sharding 后,bigcache 会将整个 value 与 key、hashedKey 等信息序列化后存进一个 byte array,这里的设计是不是有点类似网络协议里的 header 呢?
// 将整个 entry 打包到当前 shard 的
// byte array 中
w := wrapEntry(currentTimestamp, hashedKey, key, entry, &s.entryBuffer)
func wrapEntry(timestamp uint64, hash uint64, key string, entry []byte, buffer *[]byte) []byte {
keyLength := len(key)
blobLength := len(entry) + headersSizeInBytes + keyLength
if blobLength > len(*buffer) {
*buffer = make([]byte, blobLength)
}
blob := *buffer
// 小端字节序
binary.LittleEndian.PutUint64(blob, timestamp)
binary.LittleEndian.PutUint64(blob[timestampSizeInBytes:], hash)
binary.LittleEndian.PutUint16(blob[timestampSizeInBytes+hashSizeInBytes:], uint16(keyLength))
copy(blob[headersSizeInBytes:], key)
copy(blob[headersSizeInBytes+keyLength:], entry)
return blob[:blobLength]
}
这里存原始的 string key,我理解单纯是为了处理 hash 冲突用的。
每一个 cacheShard
底层的缓存数据都会存储在 bytes queue
中,即一个 FIFO
的 bytes 队列,新进入的 entry 都会 push 到末尾,如果空间不足,则会产生内存分配的过程,初始的 queue 的大小,是可以在配置中指定的:
func initNewShard(config Config, callback onRemoveCallback, clock clock) *cacheShard {
// 1. 初始化指定好大小可以减少内存分配的次数
bytesQueueInitialCapacity := config.initialShardSize() * config.MaxEntrySize
maximumShardSizeInBytes := config.maximumShardSizeInBytes()
if maximumShardSizeInBytes > 0 && bytesQueueInitialCapacity > maximumShardSizeInBytes {
bytesQueueInitialCapacity = maximumShardSizeInBytes
}
return &cacheShard{
hashmap: make(map[uint64]uint32, config.initialShardSize()),
hashmapStats: make(map[uint64]uint32, config.initialShardSize()),
// 2. 初始化 bytes queue,这里用到了上面读取的配置
entries: *queue.NewBytesQueue(bytesQueueInitialCapacity, maximumShardSizeInBytes, config.Verbose),
entryBuffer: make([]byte, config.MaxEntrySize+headersSizeInBytes),
onRemove: callback,
isVerbose: config.Verbose,
logger: newLogger(config.Logger),
clock: clock,
lifeWindow: uint64(config.LifeWindow.Seconds()),
statsEnabled: config.StatsEnabled,
}
}
注意到这点,在初始化时使用正确的配置,就能减少重新分配内存的次数了。
bigcache 本质上就是一个大的哈希表,在 go 里,由于 GC STW(Stop the World) 的存在大的哈希表是非常要命的,看看 bigcache 开发团队的博客的测试数据:
With an empty cache, this endpoint had maximum responsiveness latency of 10ms for 10k rps. When the cache was filled, it had more than a second latency for 99th percentile. Metrics indicated that there were over 40 mln objects in the heap and GC mark and scan phase took over four seconds.
缓存塞满后,堆上有 4 千万个对象,GC 的扫描过程就超过了 4 秒钟,这就不能忍了。
主要的优化思路有:
ringbuffer
存 entry,绕过了 map 里存指针,简单瞄了一下代码,后面有空再研究一下(继续挖坑当 map 中的 key 和 value 都是基础类型时,GC 就不会扫到 map 里的 key 和 value
最终他们采用了 map[uint64]uint32
作为 cacheShard
中的关键存储。key 是 sharding 时得到的 uint64 hashed key,value 则只存 offset ,整体使用 FIFO
的 bytes queue,也符合按照时序淘汰的需求,非常精巧。
经过优化,bigcache 在 2000w 条记录下 GC 的表现
go version go version go1.13 linux/arm64
go run caches_gc_overhead_comparison.go Number of entries: 20000000 GC pause for bigcache: 22.382827ms GC pause for freecache: 41.264651ms GC pause for map: 72.236853ms
效果挺明显,但是对于低延时的服务来说,22ms 的 GC 时间还是很致命的,对象数还是尽量能控制住比较好。
认真学完 bigcache 的代码,我们至少有以下几点收获:
map
中出现指针、使用 go 基础类型可以显著降低 GC 压力、提升性能本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/TaSJzQY5zuQABRzelIT6tg
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。