第一次认识 VXLAN 是在看 k8s 里面用到的叫 flannel 的网络插件有个 VXLAN 模式,利用它实现了 Overlay Network(覆盖网络),可以把所有容器连通在一起。所以本篇文章,我们一起来看看 VXLAN 是怎么将不同容器之间的网络进行打通的。
在看 VXLAN 之前,我们先来看看它的前辈 VLAN。VLAN 的全称是“虚拟局域网”(Virtual Local Area Network),它是一个二层(数据链路层)的网络,用来分割广播域,因为随着计算机的增多,如果仅有一个广播域,会有大量的广播帧(如 ARP 请求、DHCP、RIP 都会产生广播帧)转发到同一网络中的所有客户机上。
这样造成了没有必要的浪费,一方面广播信息消耗了网络整体的带宽,另一方面,收到广播信息的计算机还要消耗一部分CPU时间来对它进行处理。造成了网络带宽和CPU运算能力的大量无谓消耗。
在这种情况下出现了 VLAN 技术。这种技术可以把一个 LAN 划分成多个逻辑的 VLAN ,每个 VLAN 是一个广播域,VLAN 内的主机间通信就和在一个 LAN 内一样,而 VLAN 间则不能直接互通,广播报文就被限制在一个 VLAN 内。如下图所示。
然而 VLAN 有两个明显的缺陷,第一个缺陷在于 VLAN Tag 的设计,定义 VLAN 的 802.1Q规范是在 1998 年提出的,只给 VLAN Tag 预留了 32 Bits 的存储空间,其中只有12 Bits 才能用来存储 VLAN ID。当云计算数据中心出现后,即使不考虑虚拟化的需求,单是需要分配 IP 的物理设备都有可能数以万计甚至数以十万计,这样 4096 个 VLAN 肯定是不够用的。
VLAN 第二个缺陷在于它本身是一个二层网络技术,但是在两个独立数据中心之间信息只能够通过三层网络传递,云计算的发展普及很多业务有跨数据中心运作的需求,所以数据中心间传递 VLAN Tag 又是一件比较麻烦的事情;并且在虚拟网络中,一台物理机会有多个容器,容器与 VM 相比也是呈数量级增长,每个虚拟机都有独立的 IP 地址和 MAC 地址,这样带给交换机的压力也是成倍增加。
基于上面种种原因,VXLAN 也就呼之欲出了。
VXLAN(Virtual eXtensible LAN)虚拟可扩展局域网采用 L2 over L4 (MAC in UDP)的报文封装模式,把原本在二层传输的以太帧放到四层 UDP 协议的报文体内,同时加入了自己定义的 VXLAN Header。在 VXLAN Header 里直接就有 24 Bits 的 VLAN ID,同样可以存储 1677 万个不同的取值,VXLAN 让二层网络得以在三层范围内进行扩展,不再受数据中心间传输的限制。VXLAN 工作在二层网络( IP 网络层),只要是三层可达(能够通过 IP 互相通信)的网络就能部署 VXLAN 。VXLAN 的整个报文结构如图:
上图我们可以看到 VXLAN 报文对原始 Original Layer2 Frame 进行了包装:
从上面图 VXLAN 网络网络模型中我们可以发现 VXLAN 网络中出现了以下几个组件:
VXLAN 网络中通常 VTEP 可能会有多条隧道,VTEP 在进行通信前会通过查询转发表 FDB 来确定目标 VTEP 地址,转发表 FDB 用于保存远端虚拟机/容器的 MAC 地址,远端 VTEP IP,以及 VNI 的映射关系,而转发表通过泛洪和学习机制来构建。目标MAC地址在转发表中不存在的流量称为未知单播(Unknown unicast)。VXLAN 规范要求使用 IP 多播进行洪泛,将数据包发送到除源 VTEP 外的所有 VTEP。目标 VTEP 发送回响应数据包时,源 VTEP 从中学习 MAC 地址、VNI 和 VTEP 的映射关系,并添加到转发表中。
下面我们看看首次通信过程看看 VTEP 是如何学习的:
1. 由于是首次进行通信,VM-A 上没 VM-B 的 MAC 地址,所以会发送 ARP 广播报文请求 VM-B 的 MAC 地址。VM-A 发送源 MAC 为 VM-B 、目的 MAC 为全F、源 IP 为 IP-A、目的 IP 为 IP-B 的 ARP 广播报文,请求VM-B 的 MAC 地址;
2. VTEP-1 收到 ARP 请求后,根据二层子接口上的配置判断报文需要进入 VXLAN 隧道。VTEP-1 会对报文进行封装,封装的外层源 IP 地址为本地 VTEP(VTEP-1)的 IP 地址,外层目的 IP 地址为对端 VTEP(VTEP-2 和VTEP-3)的 IP 地址;外层源 MAC 地址为本地 VTEP 的 MAC 地址,而外层目的 MAC 地址为去往目的 IP 的网络中下一跳设备的 MAC 地址;
3. 报文到达VTEP-2和VTEP-3后,VTEP对报文进行解封装,得到VM-A发送的原始报文。然后 VTEP-2 和 VTEP-3 根据二层子接口上的配置对报文进行相应的处理并在对应的二层域内广播。VM-B 和 VM-C 接收到 ARP 请求后,比较报文中的目的IP地址是否为本机的IP地址。VM-C 发现目的IP不是本机IP,故将报文丢弃;VM-B 发现目的IP是本机IP,则对ARP请求做出应答;
4. VM-B 会根据请求的 ARP 包进行 ARP 应答报文为单播报文,报文源 MAC 为MAC-B,目的 MAC 为 MAC-A,源 IP 为 IP-B 、目的 IP 为 IP-A;
5. VTEP-2 接收到 VM-B 发送的 ARP 应答报文后,识别报文所属的 VNI,VTEP-2 对报文进行封装。封装的外层源IP地址为本地 VTEP(VTEP-2)的 IP 地址,外层目的IP地址为对端 VTEP(VTEP-1)的IP地址;外层源MAC地址为本地 VTEP 的 MAC 地址,而外层目的MAC地址为去往目的IP的网络中下一跳设备的MAC地址;
6. 报文到达 VTEP-1 后,VTEP-1 对报文进行解封装,得到 VM_B 发送的原始报文。同时,VTEP-1 学习VM_B 的MAC地址、VNI 和远端 VTEP 的IP地址(IP-2)的对应关系,并记录在本地 MAC 表中。之后,VTEP-1 将解封装后的报文发送给VM-A;
7. 至此,VM-A 就收到了 ARP 广播报文响应 VM-B 的 MAC 地址;
除了上面这种多播的方式进行学习的方式来获取 MAC <--> VNI <--> VTEP IP
这一组映射关系以外还有一种方式,就是分布式的控制中心。
例如 Flannel 的 VXLAN 模式网络中的 VTEP 的 MAC 地址并不是通过多播学习的,而是通过 apiserver 去做的同步(或者是etcd)。每个节点在创建 Flannel 的时候,各个节点会将自己的VTEP信息上报给 apiserver,而apiserver 会再同步给各节点上正在 watch node api 的 listener(Flanneld),Flanneld 拿到了更新消息后,再通过netlink下发到内核,更新 FDB(查询转发表) 表项,从而达到了整个集群的同步。这个 apiserver 就起到了分布式的控制中心的作用, 不再需要发送多余的请求去满网络访问获取对应的映射信息。
下面,我们自己动手弄一个 VXLAN 网络,然后抓包看一下,是不是和我们上面长篇大论讲述的结论是一致的。需要注意的是,在自己虚拟机上实验的时候,为了避免不必要的麻烦,记得关防火墙,centos命令是:systemctl stop firewalld
下面我们打算用 docker 来进行实验,思路就是在两个容器宿主机上各创建一个VXLAN接口,并且将VXLAN接口接入docker网桥的端口上,如下图:
对于 docker 来说,是无法直接跨节点通信的,我们这里使用 VXLAN 来模拟跨节点通信。
docker 默认使用的是 172.17.0.0/16 网段,docker容器的IP地址都会从 172.17.0.2 开始分配。为了能利用--ip参数自定义IP地址的功能,需要先创建一个自定义网络,指定网段172.18.0.0/16。
[root@localhost ~]# docker network create --subnet 172.18.0.0/16 mynetwork
## mynetwork 新的bridge网络被创建
[root@localhost ~]# docker network ls
NETWORK ID NAME DRIVER SCOPE
eb07bfe03ee3 bridge bridge local
7014433d34cf host host local
87133e370c6c mynetwork bridge local
82472e531205 none null local
我们还可以看到 docker 为我们新的网络创建了一个新的网桥:
[root@localhost ~]# brctl show
bridge name bridge id STP enabled interfaces
br-87133e370c6c 8000.0242233b251a no veth385f866
vxlan_docker
docker0 8000.024213087f4b no
创建一个新的容器,如下:
## VM1
[root@localhost ~]# docker run -itd --net mynetwork --ip 172.18.0.10 centos
## VM2
[root@localhost ~]# docker run -itd --net mynetwork --ip 172.18.0.11 centos
--net指定自定义网络
--ip指定IP地址
centos指定image
上面我们虽然创建好了网络,但是我们直接进去是无法通信的:
[root@localhost ~]# docker exec -it 5a2e519610bb /bin/bash
[root@5a2e519610bb /]# ping 172.18.0.11
PING 172.18.0.11 (172.18.0.11) 56(84) bytes of data.
From 172.18.0.10 icmp_seq=1 Destination Host Unreachable
--- 172.18.0.11 ping statistics ---
11 packets transmitted, 0 received, +8 errors, 100% packet loss, time 10007ms
pipe 4
下面我们在两个容器宿主机上各创建一个VXLAN接口,并且将VXLAN接口接入docker网桥的端口上:
## VM1
[root@localhost ~]# ip link add vxlan_docker type vxlan id 200 remote 192.168.13.132 dstport 4789 dev ens33
[root@localhost ~]# ip link set vxlan_docker up
[root@localhost ~]# brctl addif br-87133e370c6c vxlan_docker
## VM2
[root@localhost ~]# ip link add vxlan_docker type vxlan id 200 remote 192.168.13.131 dstport 4789 dev ens33
[root@localhost ~]# ip link set vxlan_docker up
[root@localhost ~]# brctl addif br-26d918129b18 vxlan_docker
上面我们分别使用 ip link add
为 VM1 和 VM2 分别创建了创建 VNI 为200的 VXLAN 网络接口,名称为vxlan_docker;然后使用 brctl addif
把新创建的VXLAN接口vxlan_docker接入到 docker 网桥中。
然后我们进入到容器中发现可以 ping 通了:
[root@5a2e519610bb /]# ping 172.18.0.11
PING 172.18.0.11 (172.18.0.11) 56(84) bytes of data.
64 bytes from 172.18.0.11: icmp_seq=1 ttl=64 time=1.14 ms
64 bytes from 172.18.0.11: icmp_seq=2 ttl=64 time=0.620 ms
^C
--- 172.18.0.11 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 0.620/0.879/1.139/0.261 ms
下面在宿主机上抓包看看:
[root@localhost ~]# tcpdump -i ens33 host 192.168.13.131 -s0 -v -w vxlan_vni_1.pcap
上面我们看到,首先是发送出 ARP 请求获取 MAC 地址,外层是 UDP 报文,目的端口是4789,目的 IP 是宿主机 VM2 的 IP;VXLAN 报文头 VNI 是200 ;ARP 请求源 MAC 地址是 VM1 里面发送消息的容器 MAC 地址,目的地址没有获取到,为 ff:ff:ff:ff:ff:ff
;
在收到回包之后,172.18.0.11回复 ARP 响应包告知 MAC 地址是 02:42:ac:12:00:0b
,然后就可以正常发送 ICMP 包了。
本篇内容,从介绍 VLAN 开始讲述 VLAN 有哪些缺点,以及为什么会有 VXLAN。然后讲了 VXLAN 的协议报文是如何封装的,整体的工作模型是怎样的,以及 VXLAN 通信过程熟悉了它是怎么运作的,最后通过一个例子实战自己动手在两个节点上实现容器间的相互通信。相信到了这里,对 VXLAN 应该有了不少了解。
https://zhuanlan.zhihu.com/p/109349917
https://zhuanlan.zhihu.com/p/35616289
https://forum.huawei.com/enterprise/zh/thread-334207.html
http://icyfenix.cn/immutable-infrastructure/network/linux-vnet.html
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2019/pdf/DEVWKS-1445.pdf
http://just4coding.com/2017/05/21/vxlan/
https://www.linuxidc.com/Linux/2019-03/157820.htm
https://zhuanlan.zhihu.com/p/130277008
https://juejin.cn/post/6994825163757846565
https://ieevee.com/tech/2017/08/12/k8s-flannel-src.html
本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/X2WXsRI2KNE-HBXku0yY_g
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。