如何实现 1 小时内完成千万级数据运算

发表于 2年以前  | 总阅读数:396 次

本文详细描述如何实现:目前手上可用的资源仅剩一个 16 核剩余 4-8G 内存的机器,单点完成在 1 个小时内千万级别 feed 流数据 flush 操作(主要包括:读数据,计算综合得分,淘汰低分数据,并更新最新得分,回写缓存和数据库)。

背景

目前工作负责的一款产品增加了综合得分序的 Feed 流排序方式:需要每天把(将近 1000W 数据量)的 feed 流信息进行算分计算更新后回写到数据层。手上的批跑物理机器是 16 核(因为混部,无法独享 CPU),同时剩下可用内存仅 4-8G。显而易见的是:我们可以申请机器,多机部署,分片计算或者通过现有的大数据平台 Hadoop 进行运算都看似可以解决问题。但是由于更新 feed 流的操作需要依赖下游服务(这里暂且叫 A,后续文中提到下游服务均可称 A 服务),而下游的服务 A-Server 本身是个 DB 强绑定的关系,也就说明了下游的服务瓶颈在于 DB 的 QPS,这也导致了即便我本身的服务多机部署,分片处理,下游服务的短板导致不可行。而针对方案二通过大数据平台完成的话,也就是需要推荐大数据的部门协助处理,显然这个是需要排期处理,而时间上也是不可预估。

既然如此,那就借用,朱光潜老先生的一篇文章《朝抵抗力最大的路径走》。我本人相信通过合理的资源调度以及更低的成本可以克服眼前的困难,实现最终的需求效果。当然优化过程中并不是一帆风顺,当然经过两周左右的优化迭代,也终于实现了。

业务主要流程流程

整个 flush 的业务流程大致如下:

  • 读取 DB 获取目前所有的 feed 类别(约 2-3w 的数据);
  • 通过类别读取 Cache 每一个类别下的 feed 流元素的索引(约 1000-10w 的数据);
  • 通过每一个信息的索引查询 feed 流所对应的基础数据信息(需要查约 3-4 张表);
  • 计算每一个 feed 元数据的得分信息(1000w 的数据量),过程中需要淘汰一部分,调用服务 A-Server 删除当前的索引;
  • 根据权重计算每一个 feed 的元素的信息,调用下游服务 A-Server,update 索引分值。

主要业务流程图具体如下:

针对上述的业务逻辑,设计出了最初方案

  • 查询 DB 或者本地缓存获取索引 feed 流中的现有全集类别;
  • foreach 类别集合 Collection,查询目前所以的类别下的 feed 数据流集合并存储到 Map 中,其中 key 是类别,value 是类别对应的数组集合(key:category,value:colletion);
  • foreach 上述获取的 Map 并发起 goruntine 查询每一条信息流元素对应的基本信息,并通过粗排来淘汰需要淘汰的元素(考虑到下游的并发和 DB 的负载问题,每查询一批,sleep 一段时间),把最终符合要求的元素存储到 map 等待后续更新得分,并刷入缓存和 DB;
  • foreach 上述粗排后的 Map,最终并发起 goruntine 调用下游 A-server,更新 feed 流的索引得分。

方案图如下:

最初方案缺陷

将近 1000W 的数据虽然在处理过程中,在使用后的集合或者 Map 都会及时清空:

Map=nil []string=nil  // 清空已使用的内容
runtime.GC()  // 发出GC的请求,希望发起GC

但是问题还是出现了:

内存跑满(由于机器总内存 18G,所以基本是内存直接跑满了)

Cpu 也基本瞬间跑满

堆栈中的异常

compress@v1.12.2/zstd/blockdec.go:215 +0x149
created by github.com/klauspost/compress/zstd.newBlockDec
 /root/go/pkg/mod/github.com/klauspost/compress@v1.12.2/zstd/blockdec.go:118 +0x166

goroutine 61 [chan receive, 438 minutes]:
github.com/klauspost/compress/zstd.(*blockDec).startDecoder(0xc006c1d6c0)
 /root/go/pkg/mod/github.com/klauspost/compress@v1.12.2/zstd/blockdec.go:215 +0x149
created by github.com/klauspost/compress/zstd.newBlockDec
 /root/go/pkg/mod/github.com/klauspost/compress@v1.12.2/zstd/blockdec.go:118 +0x166

goroutine 62 [chan receive, 438 minutes]:
github.com/klauspost/compress/zstd.(*blockDec).startDecoder(0xc006c1d790)
 /root/go/pkg/mod/github.com/klauspost/compress@v1.12.2/zstd/blockdec.go:215 +0x149
created by github.com/klauspost/compress/zstd.newBlockDec
 /root/go/pkg/mod/github.com/klauspost/compress@v1.12.2/zstd/blockdec.go:118 +0x166

goroutine 63 [chan receive, 438 minutes]:
github.com/klauspost/compress/zstd.(*blockDec).startDecoder(0xc006c1d860)
 /root/go/pkg/mod/github.com/klauspost/compress@v1.12.2/zstd/blockdec.go:215 +0x149
created by github.com/klauspost/compress/zstd.newBlockDec
 /root/go/pkg/mod/github.com/klauspost/compress@v1.12.2/zstd/blockdec.go:118 +0x166

因为堆栈给的信息不多,但是从机器上看基本是 goruntine 开启的太多,并发量太大,同时大量的数据同时加载到内存,导致了机器的内存和 Cpu 的负载过高。

针对上述的问题,设计出了第二套方案:

  • 自己实现一套协程池
  • 预分配一个内存块,维持一个对象池

对象池具体改进点如下:

协程池

实现比较简单,这里就直接上代码:

// 协程池对象
type PoolBuilder struct {
 workerNum  int                  //  Worker 线程数量
 DelJobChan *chan string // 缓冲队列

}


// 创建一个协程池
func (pool *PoolBuilder) listenAdd(num int) {
 for i := 0; i < num; i++ {
  go func(i int) { //
   addWorker(pool.AddJobChan)
  }(i)
 }
}
// 任务写入队列
func (pool *PoolBuilder) InsertAddChannel(id string, score int64) {
 log.Infof("send value to add channel,%s", id)
 pool.AddJobChan.In <- &AddChannel{
  id:    id,
  score: score,
 }
}
优化后的方案缺陷

内存和 Cpu 的负载相对降下来了,但是由于下游服务 A-Server 是对 DB 的强依赖的类型,所以突然的高并发,DB 的瓶颈成了 A-Server 的服务瓶颈。如果并发量降下来,但是 6 个小时内完成 1000w 的数据读库,业务计算,算法排序以及删除和更新每一条数据的得分,显然不够。

陷入僵局

全量的数据计算,并发高,下游服务,下游存储资源扛不;相对并发不高的情况,数据计算不完。与组内小伙伴商量,可以采用大数据平台计算不失一种好的办法。看似最优解,但是大数据平台接入,以及推动大数据平台的开发也是需要走排期等流程。

参考开源,集思广益

经过了两周的专研和思考,我最终从:hadoop 的 mapreduce 分而治的思想、vert.x 的全异步链路(本人超级喜欢的一个框架,使用后,根本不想写同步代码了)以及 Linux 的内核调度机制的三种优秀的设计中借鉴了一些思路,最终完成了 2 小时 40 分钟跑千万级别的数据优化。

1、Hadoop 的 mapreduce 分而治的思想

把任务拆分成若干分,然后分配给一个 woker 让每个 worker 处理手中的任务,并把处理后的子任务汇集到一个 woker-A。woker-A 负责把所以的子任务结果,汇总处理,并返回。

启发

我可以把每一个类别分配给一个协程处理,而每一个协程只负责每一个类别下的所以数据,这样协程的数量也就是类别的数据,这样进一步节省了协程数量,但是由于 merge 的结果在最终一步,这样的话内存就需要存储处理后全量数据,这一点与目前的内存有限不符合,所以这里借鉴了把任务分发的思想。

2、Linux 的内核调度机制(非 epoll)

在 Linux 的中内核调度中,我们知道非 epoll 的模式中,无论是 poll 和 select 的时候,都会有一个 select 来负责后续的任务调用和分配,用官方的描述就是:select 轮训设置或检查存放 fd 标志位的数据结构进行下一步处理。如果满足状态,就会扭转到下一个步,唤起相应的进程函数调用。

启发

这里可以参考 select 这个负责任的角色,当然改进的地方是我可以增加多个协程来并发查询所以类别,并进行分发类别处理,这样话,下游的协程池就可以尽可能的在完成一次调度后,马上进行下一次调度(因为分配任务的协程多了),而不会进入调度空闲的状态。

这里就直接使用网上的一张图:

3、vert.x 全异步链路

我将这个 vert.x 标红了,可以看到这里 vert.x 给我的启发是最关键也是最大的。上述问题,我反复思考,我发现,其实我如果突然的高并发,必然导致了下游的服务负载过高从而导致 DB 和下游服务扛不住。如果我能平滑的并发,而不是从某个时间点起,并发操作,也许就能解决这个问题。

并发代码我们写的多,但也许我们大家写的只是并发而不是真正的异步,因为我们在开始或者函数汇总的结果初我们都会使用阻塞,当然我也是有短时间没有写全异步的代码了,所以思想固化了,具体案例如下分析:

这种在主线中启动并发或者异步的处理,最终还是需要在主线程中使用 wait 来阻塞等等所以线程的结果处理完毕,这样看似提高的吞吐量,但是由于需要对并发线程或协程的结果进行汇总计算,这样就注定要把大量的结果集合存储到内存,然后进行后续的操作。这样的异步更像一种伪装异步。

而在 vert.x 中是将上下游的数据通信都是用了 callback 的方式处理,而正是这样,这个框架的做到了全链路的异步逻辑。这里我们看看这个框架的核心思想:

Vertx 完成采用另一个机制,用一个线程来接受请求(也可以是几个,注意是几个,不是几百个),而把这个真正要执行的任务委托给另外一个线程来执行,从而不会堵塞当前线程。

另外在 Vert.x 中的调度模型也正是使用了 Linux 的 epoll 的事件驱动的机制,大致如下:

整体来看 vert.x 的做到了:

1.非阻塞处理请求,异步执行阻塞程序,保证了请求处理的高效性;

2.使用 Event Bus 事件总线来进行通讯,可以轻松编写出分布式、松耦合、高扩展性的程序。

这里可以展示一下 Vert.x 的异步代码:

public class Server extends AbstractVerticle {
  public void start() {
    vertx.createHttpServer().requestHandler(req -> {
      req.response()
        .putHeader("content-type", "text/plain")
        .end("Hello from Vert.x!");
    }).listen(8080);
  }
}

对异步代码有兴趣的小伙伴一定要看看:https://vertx.io/

优化改造开始

借鉴了上述优秀的思想,我对自己的服务做了以下改进:

1、我构造了 4 个协程池,分别是查询类别 category、查询 DB 基本信息、根据算法计算综合得分、和数据更新回写;

2、从主协程开始,不做任何阻塞,查询类别的协程协程池,每查询一个类别,结果直接丢到 channelA(不阻塞然后继续擦下类别);

3、查询 DB 的协程,监听 channelA,当发现有数据的时候,查询 DB 信息,并将结果丢到 channelB(同上不做任何阻塞,继续查询下一条数据的结果集合);

4、帖子得分协程池读取 channelB 的数据,然后根据算法计算处理帖子的得分,并将结果集合丢到 channelC(同样不做任何阻塞,继续计算下一次的得分数据);

5、而数据回写的协程负责调用下游服务 A-Server,处理后完,打 log,标记处理的偏移量(由于没有阻塞,需要跟着最终所以数据是否处理完成)。

业务架构设计如下:

优化效果

1、协程数 6w->100!,这里协程数从 6w 降到了 100 个协程就 Cover 住了整个项目;

2、内存使用情况,从基本跑满到仅仅使用 1-2G 的正常内存。

3、CPU 的使用 460%的使用率直接降到 65%:

4、计算数据量 1000w 的时间 6 个小时并发算不完到 1 小时 46 分钟计算完成。

总结:没想到自己的坚持看到了效果,自选股的业务中也因此可以接入综合得分序列的 feed 流,我相信这个是一个好的开始,在这个基础上,我们可以根据个人画像做更多的智能推荐,期间大伙的建议更多是借用大数据平台计算,而实际的推进和排期让我更愿意用自己的方式以最低的成本最优的结构去优化完成,当然这次很幸运,自己的努力实现了。

本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/9QD8kzWHmuN4m2MmEg92NQ

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237269次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8108次阅读
 目录