音频基础知识 - PCM 浅析

发表于 2年以前  | 总阅读数:513 次

PCM浅析

最近有个需求:对音频裁剪时,裁剪条的纵坐标必须是音频音量,以帮助用户更好的选择音频区域,所以就需要快速准确的提取出音频的音量列表。本文主要介绍下从mp4文件中提取音轨音量的方式,以及相关的知识点。

音频基础知识

声音的本质是空气压力差造成的空气振动,振动产生的声波可以在介质中快速传播,当声波到达接收端时(比如:人耳、话筒),引起相应的振动,最终被听到。

声音有两个基本属性:频率与振幅。声音的振幅就是音量,频率的高低就是音调,频率的单位是赫兹(Hz)。

当声波传递到话筒时,话筒里的碳膜会随着声音一起振动,而碳膜下面是一个电极,碳膜振动时会触碰电极,接触时间的长短跟振动幅度有关(即:声音响度),这样就完成了声音信号到电压信号的转换。后面经过电路放大后,就得到了模拟音频信号。

模拟音频:用连续的电流或电压表示的音频信号,在时间和振幅上是连续。过去记录的声音都是模拟音频,比如:机械录音(以留声机、机械唱片为代表)、磁性录音(以磁带录音为代表)等模拟录音方式。

计算机不能直接处理连续的模拟信号,所以需要进行A/D转换,以一定的频率对模拟信号进行采样(就是获取一定时间间隔的波形振幅值,采样后模拟出的波形与原始波形之间的误差称为采样噪音),然后再进行量化和存储,就得到了数字音频。

数字音频:通过采样和量化获得的离散的、数字化的音频信号,即:计算机可以处理的二进制的音频数据。

相反的,当通过扬声器播放声音时,计算机内部的数字信号通过D/A转换,还原成了强弱不同的电压信号。这种强弱变化的电压会推动扬声器的振动单元产生震动,就产生了声音。整个流程可以用下图来表示:

PCM元数据

最常见的A/D转换是通过脉冲编码调制 PCM (Pulse Code Modulation)。要将连续的电压信号转换为PCM,需要进行采样和量化,我们一般从如下几个维度描述PCM:

  1. 采样频率(Sampling Rate):单位时间内采集的样本数,即:采样周期的倒数,指两个采样之间的时间间隔。采样频率越高,声音质量越好,但同时占用的带宽越大。一般情况下,22KHz相当于普通FM的音质,44KHz相当于CD音质,目前的常用采样频率都不超过48KHz。
  2. 采样位数:表示一个样本的二进制位数,即:每个采样点用多少比特表示。计算机中音频的量化深度一般为4、8、16、32位(bit)等。例如:采样位数为8 bit时,每个采样点可以表示256个不同的采样值,而采样位数为16 bit时,每个采样点可以表示65536个不同的采样值。采样位数的大小影响声音的质量,采样位数越多,量化后的波形越接近原始波形,声音的质量越高,而需要的存储空间也越多;位数越少,声音的质量越低,需要的存储空间越少。一般情况下,CD音质的采样位数是16 bit,移动通信是8 bit。
  3. 声道数:记录声音时,如果每次生成一个声波数据,称为单声道;每次生成两个声波数据,称为双声道(立体声)。单声道的声音只能使用一个喇叭发声,双声道的PCM可以使两个喇叭同时发声(一般左右声道有分工),更能感受到空间效果。
  4. 时长:采样时长,数字音频文件大小(Byte) = 采样频率(Hz)× 采样时长(S)×(采样位数 / 8)× 声道数(单声道为1,立体声为2)

采样点数据有有符号和无符号之分,比如:8 bit的样本数据,有符号的范围是-128 ~ 127,无符号的范围是0 ~ 255。大多数PCM样本使用整形表示,但是在一些对精度要求比较高的场景,可以使用浮点类型表示PCM样本数据。

下面看一个具体的采样示例:

其中,黑色曲线表示要采集的声音波形,红色曲线表示采样量化后的PCM数据波形。上图中,采样位数是4 bit,每个红点对应一个Pcm采样数据,很明显:

  • 采样频率越高,x轴采样点越密集,声音越接近原始数据。
  • 采样位数越高,y轴量化越精确,声音越接近原始数据。

PCM数据存储

接下来看下PCM数据存储方式,如果是单声道音频,采样数据按照时间的先后顺序依次存储,如果是双声道音频,则按照<span style="font-size: 14px;">LRLRLR方式存储,每个采样点的存储方式还与机器大小端有关。大端模式如下图所示:

Pcm文件没有头部信息,全部是采样量化后的未压缩音频数据。

PCM音量计算

我们一般用分贝(db)描述声音响度。声学领域中,分贝的定义是声源功率与基准声源功率比值的对数乘以20的数值。根据人耳的特性,我们对声音的大小感知呈对数关系,而不是线性关系。

人类的听觉反应是基于声音的相对变化而非绝对变化。对数函数正好能模仿人耳对声音的反应。所以用分贝描述声音强度更符合人类对声音强度的感知。

如下图所示,横轴表示PCM采样值,纵轴表示人耳感知到的音量,图中截取了两块横轴变化相同的区域,但是人耳感觉到的音量变化是不一样的。

在较安静的左侧,感觉到的音量变化较大;在叫喧嚣的右侧,人耳感觉到的音量变化较小。

具体来说,分贝计算公式如下所示:

其中, 表示两个采样值的比值。在计算某个采样值的分贝时,直接把 当成最小采样值1处理就可以了。所以如果采样位数是16 bit,那么无符号情况下,最大分贝是:

有符号情况下,最大分贝是:

OK,了解了PCM格式和db计算方式之后,我们看下从音频文件提取db值的整体流程:

Android

首先,我们基于Android平台的多媒体API来实现PCM的数据提取,然后计算分贝值。

简单概述就是:首先通过MediaExtractor解封装Mp4提取AAC编码流,然后通过MediaCodec解码AAC数据,得到PCM。核心代码如下所示:

// 解封装器
val audioExtractor = MediaExtractor()
// 设置路径
audioExtractor.setDataSource(audioInputPath)
// 找到音轨
for (i in 0 until audioExtractor.trackCount) {
    val format = audioExtractor.getTrackFormat(i)
    if (format.getString(MediaFormat.KEY_MIME).startsWith("audio/")) {
        audioExtractor.selectTrack(i)
        // 音轨Format
        inputAudioFormat = format
        break
    }
}

// 音频声道数
audioChannel = inputAudioFormat.getInteger(MediaFormat.KEY_CHANNEL_COUNT)
// 音频采样率
audioSampleRate = inputAudioFormat.getInteger(MediaFormat.KEY_SAMPLE_RATE)
val mime = inputAudioFormat.getString(MediaFormat.KEY_MIME)
val sampleBitStr = inputAudioFormat.getString(MediaFormat.KEY_PCM_ENCODING)
val sampleBit = if (sampleBitStr != null) {
                    try {
                        Integer.parseInt(sampleBitStr)
                        } catch (e: Exception) {
                            AudioFormat.ENCODING_PCM_16BIT
                        }
                } else {
                    AudioFormat.ENCODING_PCM_16BIT
                }

// 一个采样点占用的字节数
sampleByte = when (sampleBit) {
    AudioFormat.ENCODING_PCM_8BIT -> 1
    AudioFormat.ENCODING_PCM_16BIT -> 2
    else -> 2
}

// 启动解码器
val audioDecoder = MediaCodec.createDecoderByType(mime)
audioDecoder.configure(inputAudioFormat, null, null, 0)
audioDecoder.start()

// 解码器的输入和输出Buffer列表
val decoderInputBuffer = audioDecoder.inputBuffers
var decoderOutputBuffer = audioDecoder.outputBuffers
val bufferInfo = MediaCodec.BufferInfo()
while (!decodeDone) {
    if (!inputDone) { // 提取AAC,进行编码
        val inputIndex = audioDecoder.dequeueInputBuffer(0L)
        if (inputIndex >= 0) {
            val inputBuffer = decoderInputBuffer[inputIndex]
            inputBuffer.clear()
            val readSampleSize = localAudioExtractor.readSampleData(inputBuffer, 0)
            if (readSampleSize > 0) {
                audioDecoder.queueInputBuffer(inputIndex, 0, readSampleSize, localAudioExtractor.sampleTime, localAudioExtractor.sampleFlags)
                // 移动到下一帧
                audioDecoder.advance()
            } else { // 结束帧
                audioDecoder.queueInputBuffer(inputIndex, 0, 0, 0, MediaCodec.BUFFER_FLAG_END_OF_STREAM)
                inputDone = true
            }
        }
    }

    if (!decodeDone) {
        val outputIndex = localAudioDecoder.dequeueOutputBuffer(bufferInfo, 0)
        if (outputIndex >= 0) {
            if(bufferInfo.size > 0){
                val outputBuffer = decoderOutputBuffer[outputIndex]
                // 大小端
                val isBigEndian = (outputBuffer.order() == ByteOrder.BIG_ENDIAN)
                outputBuffer.position(bufferInfo.offset)
                outputBuffer.limit(bufferInfo.offset + bufferInfo.size)
                val pcmByteArray = ByteArray(bufferInfo.size)
                // copy出PCM数据
                outputBuffer.get(pcmByteArray)
                outputBuffer.clear()
                // 当前帧采样点个数
                val curSampleNum = pcmByteArray.size / sampleByte / audioChannel
                // 计算出当前帧的DB值
                val db = compute(isBigEndian,pcmByteArray,audioChannel,sampleByte)
                // 处理db值
                ......
            }

            // 归还Buffer
            audioDecoder.releaseOutputBuffer(outputIndex, false)
            // 判断是否是最后的帧
            if ((bufferInfo.flags and MediaCodec.BUFFER_FLAG_END_OF_STREAM) != 0){
                decodeDone = true
            }
        }
    }
}
复制代码

上述代码是通过MediaExtractor和MediaCodec解码音视频的标准流程,已经添加了详细的注释,我们看下基于PCM计算db的具体函数:

fun compute(isBigEndian : Boolean ,pcmByteArray : ByteArray,audioChannel : Int,sampleByte : Int){
// 计算出步长:MediaCodec解码出的PCM数据是按照Packed模式存储的
val step = if (audioChannel == 2) {
            if (sampleByte == 2) {
                4
            } else {
                2
            }
        } else {
            if (sampleByte == 2) {
                2
            } else {
                1
            }
        }

var i = 0
var sum = 0.0
while (i < pcmByteArray.size) {
    // 绝对值求和
    sum += if (sampleByte == 2) {
                // 根据大小端把两个byte转换成short
                val sample = byteToShort(isBigEndian, pcmArray[i], pcmArray[i + 1])
                Math.abs(sample.toInt()).toDouble()
            } else {
                Math.abs(pcmByteArray[i].toInt()).toDouble()
            }
            i += step
    }

// 基于平均采样点,计算出db值    
return (20 * log10(sum / (pcmByteArray.size / step))).toInt()
}
复制代码

通过上述代码,我们可以基于解码出的PCM,计算出对应的db值,但是这种方式存在一个最大的缺点就是耗时严重,一个5分钟的音频,需要二三十秒,甚至更长,这完全是无法忍受的。我们不得不寻求更高效的解决方案。

iOS

iOS平台提供了AVFoundation库,用于音视频操作。我们可以基于它直接提取出整首歌的PCM数据,然后计算出分贝值。大体流程如下所示:

  • 首先通过AVAudioFile加载本地音频文件,获取采样率、声道数等音频信息。
  • 接着通过上述采样率、声道数以及采样点格式AVAudioCommonFormat构建AVAudioFormat,表示一种音频格式。
  • 然后通过AVAudioFormat和音频采样帧数(等于采样率乘以时长)构建AVAudioPCMBuffer,并且通过AVAudioFile.read把音频数据解码到AVAudioPCMBuffer,获取到解码后的PCM Buffer。
  • AVAudioPCMBuffer包含了多个声道的数据,多个声道的数据是如何存储的那?可以通过AVAudioFormat.isInterleaved进行判断,若是true,则表示多个声道数据是交替存储的,即:LRLRLRLR方式,若是false,则表示多个声道数据是分开存储的,即:LLLLRRRR模式。
  • 最后基于AVAudioPCMBuffer提供的PCM数据,针对单一声道,计算出分贝值,计算方式与Android平台类似,此处不再赘述。

可见,iOS平台对音频数据的提取提供了非常友好的API,并且测试下来发现,同一首5分钟的歌曲,耗时只有两三秒,各个方面,都吊打 Android

跨平台

除了Android和iOS平台的多媒体框架,我们还可以基于FFmpeg实现跨平台的PCM数据提取。

FFmpeg是一个开源的跨平台多媒体框架,关于FFmpeg的介绍,网上的资料很多,这里就不再赘述了。

通过FFmpeg解码本地音视频文件,还是比较简单的,整体流程如下所示:

  • 首先注册所有的解封装和封装格式(av_register_all)
  • 接着打开本地文件,获取音频流信息(avformat_open_input -> av_dump_format)
  • 其次创建解码音频流的解码上下文,并设置解码参数(avcodec_alloc_context3 -> avcodec_open2)。
  • 然后从本地文件读取音频裸流帧AVPacket,然后交给解码器解码,最后从解码器获取PCM原始数据帧AVFrame(av_packet_alloc -> avcodec_receive_frame)
  • 因为FFmpeg解码出的PCM数据存储格式有很多种,所以我们会统一重采样到AV_SAMPLE_FMT_S16P格式(swr_convert)
  • 最后针对重采样后的PCM数据计算出分贝值,并且释放各种资源。

不同于MediaCodec解码出的PCM是按照LRLRLR方式存储,FFmpeg解码出的PCM存储格式更加丰富,如下所示:

enum AVSampleFormat {
    AV_SAMPLE_FMT_NONE = -1,
    AV_SAMPLE_FMT_U8,          ///< unsigned 8 bits
    AV_SAMPLE_FMT_S16,         ///< signed 16 bits
    AV_SAMPLE_FMT_S32,         ///< signed 32 bits
    AV_SAMPLE_FMT_FLT,         ///< float
    AV_SAMPLE_FMT_DBL,         ///< double

    AV_SAMPLE_FMT_U8P,         ///< unsigned 8 bits, planar
    AV_SAMPLE_FMT_S16P,        ///< signed 16 bits, planar
    AV_SAMPLE_FMT_S32P,        ///< signed 32 bits, planar
    AV_SAMPLE_FMT_FLTP,        ///< float, planar
    AV_SAMPLE_FMT_DBLP,        ///< double, planar
    AV_SAMPLE_FMT_S64,         ///< signed 64 bits
    AV_SAMPLE_FMT_S64P,        ///< signed 64 bits, planar

    AV_SAMPLE_FMT_NB           ///< Number of sample formats. DO NOT USE if linking dynamically
};
复制代码

除了有有符号和无符号的区别外,还可以是short、float和double类型,采样位数也可以是8 bit、16 bit、32 bit和64 bit。除此之外,即使同样是signed 16 bits,也存在Packed和Planar的区别。

对于双声道音频来说,Packed表示两个声道的数据交错存储,交织在一起,即:LRLRLRLR的存储方式;Planar 表示两个声道分开存储,也就是平铺分开,即:LLLLRRRR的存储方式。

通过MediaCodec解码出的PCM是按照Packed方式存储的,而FFmpeg解码出的PCM则可能是其中的任意一种。

所以为了更好的归一化处理,我们会对FFmpeg解码出的PCM进行重采样,统一采样成AV_SAMPLE_FMT_S16P格式,即:每个采样点是两字节的有符号short类型,并且按照Planar方式存储。

重采样:对PCM数据进行重新采样,可以改变它的声道数、采样率和采样格式。比如:原先的PCM音频数据是2个声道,44100采样率,32 bit单精度型。那么可以重采样成:2个声道,44100采样率,有符号short类型。

关于分贝值的计算,与上述基于Android平台的计算方式基本一致,此处就不再赘述了。

同一首5分钟的歌,通过FFmpeg提取PCM的耗时只有一两秒,提取效率至少提升了10倍以上,基本上与iOS持平,至此终于可以松一口气了。

PCM播放

PCM是原始采样数据,必须指定采样率、声道数和采样位数(大小端)才能播放。通过ffplay播放PCM的命令如下所示:

fplay -ar 44100 -channels 2 -f s16le -i test.pcm

参数说明:
1. -ar PCM采样率
2. -channels PCM通道数
3. -f PCM格式:sample_fmts + le(小端)或者be(大端)
sample_fmts可以通过ffplay -sample_fmts来查询
复制代码

除此之外,通过Audacity也可以直接播放PCM数据:文件 -> 导入 -> 原始数据,然后选择对应的采样率、声道数、采样位数和大小端就可以播放了。

Audacity功能很强大,对于PCM的波形(采样点值)、响度(db)和频谱,都可以直接查看,如下所示:PCM-波形

PCM-响度

PCM-频谱

疑问点

为什么Android平台解封装、解码音频提取PCM的速度这么慢?具体原因我也无法猜测,待深入研究之后再来解答吧,如果音视频的大佬有相关经验,也麻烦告知。

参考文档

  1. PCM音量控制
  2. PCM音量控制(高级篇)

本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/NVEe2WyAMeOq_2icf6EOxQ

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237268次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8108次阅读
 目录